Abstract:
A method for reducing power consumption by a wireless communication device is disclosed. The method can include the wireless communication device determining that the device is experiencing an uplink power limited condition. In an instance in which the connection to the serving network was established only for a signaling purpose, the method can further include the wireless communication device sending a measurement report including an actual measured downlink signal quality value for the serving network in response to the uplink power limited condition. However, if the connection to the serving network was not established only for a signaling purpose, the method can include the wireless communication device sending a measurement report including a modified downlink signal quality value for the serving network to trigger a handover in response to the uplink power limited condition.
Abstract:
Embodiments of a wireless user equipment device are disclosed that may allow for the detection of radio frequency conditions. The device may be configured to determine message priorities and control the activation of a connected mode discontinuous reception in response to the message priorities.
Abstract:
A user equipment (“UE”) connected to a first network that performs methods including receiving a page from the first network indicating an incoming voice call, when it is determined the voice call was not successfully connected, incrementing a value of a counter and when the value satisfies the threshold, switching from the first network to a second network. Another method includes originating a voice call via the first network, when it is determined the voice call was not successfully connected, opening a socket connection with the first network and attempting to re-originate the voice call via the first network. Another method includes determining whether the UE has switched a connection from a first network to a second network and when it is determined that the UE has switched the connection to the second network, initiating an action by the UE.
Abstract:
Methods and apparatus for power optimization in e.g., a wireless mobile device. In one embodiment, the optimization is effected via intelligent idle mode current drain management. In an exemplary LTE cellular network context, the user equipment (UE) only powers on its transceiver for a subset of Discontinuous Reception (DRX) cycles based on e.g., the quality of the radio environment, power considerations, location, etc. For example, if a UE has not moved, and its radio reception quality is good, the UE is likely to successfully receive a paging notification (i.e., without multiple attempts). Consequently, the UE configures itself to receive only a single paging indication.
Abstract:
Methods and apparatus for power optimization in e.g., a wireless mobile device. In one embodiment, the optimization is effected via intelligent idle mode current drain management. In an exemplary LTE cellular network context, the user equipment (UE) only powers on its transceiver for a subset of Discontinuous Reception (DRX) cycles based on e.g., the quality of the radio environment, power considerations, location, etc. For example, if a UE has not moved, and its radio reception quality is good, the UE is likely to successfully receive a paging notification (i.e., without multiple attempts). Consequently, the UE configures itself to receive only a single paging indication.
Abstract:
A user equipment (“UE”) connected to a first network that performs methods including receiving a page from the first network indicating an incoming voice call, when it is determined the voice call was not successfully connected, incrementing a value of a counter and when the value satisfies the threshold, switching from the first network to a second network. Another method includes originating a voice call via the first network, when it is determined the voice call was not successfully connected, opening a socket connection with the first network and attempting to re-originate the voice call via the first network. Another method includes determining whether the UE has switched a connection from a first network to a second network and when it is determined that the UE has switched the connection to the second network, initiating an action by the
Abstract:
A voice over Long Term Evolution (VoLTE) capable mobile device is configured to deregister from an Internet Protocol (IP) Multimedia Subsystem (IMS) network element for voice connections and use a dual network mode of operation that includes data connections via a 4G LTE/LTE-A network and voice connections via a legacy 3G or 2G network based on performance metrics a serving cell of the 4G LTE/LTE-A network. When the performance metrics indicate that voice connections may be unstable, such as when a reference signal received power (RSRP) falls below a threshold level but remains above a reselection/handover threshold level, the mobile device deregisters from the IMS network element to disable VoLTE connections from being established. The mobile device establishes the requested voice connection via a legacy 3G or 2G network instead, while established or new data connections for the mobile device continue to use the 4G LTE/LTE-A network.
Abstract:
Methods and apparatus for power optimization in e.g., a wireless mobile device. In one embodiment, the optimization is effected via intelligent idle mode current drain management. In an exemplary LTE cellular network context, the user equipment (UE) only powers on its transceiver for a subset of Discontinuous Reception (DRX) cycles based on e.g., the quality of the radio environment, power considerations, location, etc. For example, if a UE has not moved, and its radio reception quality is good, the UE is likely to successfully receive a paging notification (i.e., without multiple attempts). Consequently, the UE configures itself to receive only a single paging indication.
Abstract:
The present disclosure relates to several techniques for reducing the occurrence of data collisions, which can occur when multiple devices simultaneously transmit data in the same (frequency) channel. For example, a turnaround time in which a device switches from a receive mode of operation to a transmit mode of operation may be reduced based on the device and another device indicating that they are capable of operating with a reduced turnaround. As another example, devices may use learning-based turnaround estimation to determine a turnaround time supported by other devices and utilize the determined turnaround time, for instance, instead of a longer turnaround time. As yet another example, multiple clear channel assessments may be performed before transmitting data. For instance, a first clear channel assessment may be performed during a backoff period, and a second clear channel assessment may be performed afterwards before data is transmitted.
Abstract:
Methods and apparatus enabling a mobile device to receive paging notifications from multiple networks. In one embodiment of the present invention, a first device connected to a first network momentarily ignores the first network, to monitor a second network instead. The first device identifies and prioritizes a list of applications of the first network; the prioritized listing allows the first device to preempt one of its lower priority tasks to monitor the second network for paging messages instead. The described methods and apparatus enable e.g., GSM paging for Class B cellular devices which are connected to GPRS NMO-2 type networks. The Class B cellular device can ignore certain GPRS data (which is tolerant to error), to decode GSM paging channels, which would otherwise be missed.