Abstract:
Electronic devices and methods pertain to reducing artifacts resulting from a thermal profile preexisting a boot up of an electronic device are disclosed. Scanning driving circuitry of the electronic device scans at least a portion of one or more pixels of an active area of a display using a boot up scan before a boot up sequence of at least a portion of an electronic device completes. The results of the boot up scan are stored in local buffers and transferred to one or more processors upon connection to the one or more processors. The results of the boot up scan cause the one or more processors to modify image data to reduce or eliminate artifacts that may result during boot up due to thermal profiles or other parameters that may cause artifacts.
Abstract:
Systems and methods for improving display image quality on electronic displays are provided. One embodiment of an electronic display includes display pixels that share a common electrode. Each of the display pixels includes a first conductive path electrically coupled between a pixel electrode and a data line, in which the first conductive path only enables the data line to charge the pixel electrode; and a second conductive path electrically coupled between the pixel electrode and the data line in parallel with the first conductive path, in which the second conductive path enables the data line to discharge the pixel electrode such that discharge rate of the pixel electrode is approximately equal to charge rate of the pixel electrode. Additionally, the embodiment includes a touch pixel that detects occurrence and position of a touch on a screen of the electronic display using the first common electrode.
Abstract:
An electronic device may have a variable refresh rate display. Static content may be displayed on the display at a lower refresh rate than moving content to conserve power. The display may include an array of pixels. Display driver circuitry in the display may load image data into rows of the pixels. The display driver circuitry may have digital-to-analog converter circuitry that supplies data signals to the array. The display driver circuitry may respond to a variable refresh rate control signal that is asserted and deasserted depending on whether static or moving image content is to be displayed. The display driver circuitry may use the digital-to-analog converter circuitry to apply a time-varying scaling factor to the image data. The magnitude of the scaling factor may be adjusted during transitions between refresh rates to help suppress luminance variations that might otherwise result in flickering on the display.
Abstract:
An electronic display device designed to a method and device that corrects for distorted luminance and colors due to data-to-scan coupling in a flat-panel display.
Abstract:
An electronic device may include an electronic display having a gate-on-array (GOA) that generates gate signals in response to an activation signal, pixels that activate in response to a combination of the gate signals and data signals indicative of image data, and sensing circuitry. The sensing circuitry may measure a characteristic response of a gate signal a characteristic response of one or more pixels, or both and compare the characteristic responses to baselines. The electronic device may also include compensation circuitry that applies a compensation to the activation signal and/or to the image data based on the comparisons between the characteristic responses and the baselines.
Abstract:
An electronic device may include an electronic display having a gate-on-array (GOA) that generates gate signals in response to an activation signal, pixels that activate in response to a combination of the gate signals and data signals indicative of image data, and sensing circuitry. The sensing circuitry may measure a characteristic response of a gate signal a characteristic response of one or more pixels, or both and compare the characteristic responses to baselines. The electronic device may also include compensation circuitry that applies a compensation to the activation signal and/or to the image data based on the comparisons between the characteristic responses and the baselines.
Abstract:
Systems, methods, and devices are provided for mitigating visual artifacts by dynamically tuning bias voltages applied to display pixels. An electronic display may include a display pixel and a bias voltage supply. The bias voltage supply may supply a first bias voltage to the display pixel for a first subframe of a frame of image data. The bias voltage supply may supply a different second bias voltage to the display pixel for a second subframe of the frame of image data. This may mitigate certain image artifacts, such as flicker or variable refresh rate luminance difference, that could arise due to display pixel hysteresis that varies across subframes of the image frame.
Abstract:
Systems, methods, and devices are provided for mitigating visual artifacts by dynamically tuning bias voltages applied to display pixels. An electronic display may include a display pixel and a bias voltage supply. The bias voltage supply may supply a first bias voltage to the display pixel for a first subframe of a frame of image data. The bias voltage supply may supply a different second bias voltage to the display pixel for a second subframe of the frame of image data. This may mitigate certain image artifacts, such as flicker or variable refresh rate luminance difference, that could arise due to display pixel hysteresis that varies across subframes of the image frame.
Abstract:
An electronic device comprises an electronic display having an active area having a pixel. The electronic device also comprises processing circuitry configured to receive image data to send to the pixel and adjust the image data to generate corrected image data based at least in part on a stored correction value for the pixel. The processing circuitry also is configured to generate a test data to send to the pixel subsequent to sending corrected image data to the pixel, wherein the test data is selected based upon a comparison of at least one aspect of the corrected image data with a threshold value.
Abstract:
A display device may include a plurality of pixels configured to display image data on a display. The display device may also include a circuit that measures a first current associated with a light-emitting diode (LED) of a pixel of the plurality of pixels in response to the circuit receiving a first data voltage. The circuit may also measure a second current associated with the LED of the pixel of the plurality of pixels in response to the circuit receiving a second data voltage. The circuit may then determine a voltage associated with the LED based at least in part on the first current and the second current.