Abstract:
A finger biometric sensor may include first and second integrated circuit (IC) dies arranged in a stacked relation. The first IC die may include a first semiconductor substrate and an array of finger biometric sensing pixels thereon, and the second IC die may include a second semiconductor substrate and processing circuitry thereon coupled to the array of finger biometric sensing pixels. The first and second IC dies may each have respective first and second non-rectangular shapes, such as circular shapes that are coextensive.
Abstract:
An acoustic imaging system can contain a plurality of individual acoustic elements that each contain an acoustic transducer, drive circuitry, and low voltage sense and/or read circuitry. In many embodiments both the drive circuitry and the read circuitry can be independently addressable. For example, if the individual acoustic elements are arranged into rows and columns, each acoustic element can include row/column drive circuit enable switches and row/column read circuit enable switches.
Abstract:
A finger biometric sensing device may include drive circuitry for generating a drive signal and an array of finger biometric sensing pixel electrodes cooperating with the drive circuitry and generating a detected signal based upon placement of a finger adjacent the array. The detected signal may include a drive signal component and a sense signal component superimposed thereon. A gain stage may be coupled to the array and drive signal nulling circuitry may be coupled to the gain stage for reducing the drive signal component from the detected signal. The drive signal nulling circuitry may include a first digital-to-analog converter (DAC) generating an inverted scaled replica of the drive signal for the gain stage. Error compensation circuitry includes a memory storing error compensation data and a second DAC coupled in series with the first DAC compensating an error in the inverted scaled replica based upon the error compensation data.
Abstract:
Embodiments of the present disclosure are directed to a sensor without a traditional substrate. In the disclosed embodiments, a substrate may be omitted and the sensor may be mounted on, and/or incorporated into, a functional element of an electronic device such as a cover glass for a touch screen or a display of a computing device. As a substrate may be used during formation of the sensor, the substrate on which the sensor is actually mounted on during use can be configured to have certain properties or characteristics, such as transparency, a certain thickness, and the like. In other words, the parameters of the substrate used to mount the sensor may not be constrained by the requirements of the manufacturing process of the sensor.
Abstract:
A capacitive fingerprint sensor that may be formed of an array of sensing elements. Each capacitive sensing element of the array may register a voltage that varies with the capacitance of a capacitive coupling. A finger may capacitively couple to the individual capacitive sensing elements of the sensor, such that the sensor may sense a capacitance between each capacitive sensing element and the flesh of the fingerprint. The capacitance signal may be detected by sensing the change in voltage on the capacitive sensing element as the relative voltage between the finger and the sensing chip is changed. Alternately, the capacitance signal may be detected by sensing the change in charge received by the capacitive sensing elements as the relative voltage between the finger and the sensing chip is changed.
Abstract:
A sensor system and method that adjusts sensor data to account for the presence of noise that causes variations in signal amplitude between sensor blocks and between sensor rows. In order to account for the presence of noise in a sensor apparatus, various embodiments apply a first adjustment to the sensor data to account for variations in signal amplitude that occur from block to block. Various embodiments may also apply a second adjustment to the sensor data to account for variations in signal amplitude that occur from row to row.
Abstract:
A touch sensor panel includes a first set of touch electrodes configured to operate as drive lines and that are disposed in a first layer of the touch sensor panel. The touch sensor panel also includes a second set of touch electrodes configured to operate as sense lines and that are disposed in a second layer of the touch sensor panel, different than the first layer of the touch sensor panel, such that one or more mutual capacitance touch nodes are formed by the first set of touch electrodes and the second set of touch electrodes. The touch sensor panel also includes a third set of touch electrodes configured to operate as self-capacitance electrodes and that are disposed in the first layer or the second layer of the touch sensor panel.
Abstract:
A touch sensor panel includes a first set of touch electrodes configured to operate as drive lines and that are disposed in a first layer of the touch sensor panel. The touch sensor panel also includes a second set of touch electrodes configured to operate as sense lines and that are disposed in a second layer of the touch sensor panel, different than the first layer of the touch sensor panel, such that one or more mutual capacitance touch nodes are formed by the first set of touch electrodes and the second set of touch electrodes. The touch sensor panel also includes a third set of touch electrodes configured to operate as self-capacitance electrodes and that are disposed in the first layer or the second layer of the touch sensor panel.
Abstract:
Input members with capacitive sensors are disclosed. In one embodiment of an electronic button, a first circuit is configured to capture a fingerprint of a user's finger placed on the electronic button, and a second circuit is configured to sense a force applied to the electronic button by the user's finger. The first circuit is further configured to provide temperature information to compensate for temperature sensitivities of the second circuit, and the second circuit is further configured to provide force information to the first circuit.
Abstract:
Input members with capacitive sensors are disclosed. In one embodiment of an electronic button, a first circuit is configured to capture a fingerprint of a user's finger placed on the electronic button, and a second circuit is configured to sense a force applied to the electronic button by the user's finger. The first circuit is further configured to provide temperature information to compensate for temperature sensitivities of the second circuit, and the second circuit is further configured to provide force information to the first circuit.