Abstract:
Intelligent radio access technology sensing and selection are applied in a dynamic traffic steering network. Network characteristics and network policies are determined. A server sends network characteristics and network policies to user equipment devices. User equipment devices can determine a radio access technology to connect to based on network policies and network characteristics. Further, it can be determined how to select user equipment devices for connection to a radio access network via a radio access technology. User equipment devices can dynamically select a radio access network for connection based on real-time or near real-time radio access network conditions. A self-organizing network can monitor and determine radio access network conditions and the radio access network conditions can be sent to user equipment devices in given cellular broadcast area.
Abstract:
Determining a permission for a user equipment to connect to an access point based on the public/private status of the access point device is disclosed. The permission can be based on a historic user equipment density for an area comprising the location of the access point device. The permission can be further based on analysis of an access point device identifier. Analysis of the access point device identifier can be based on comparing a portion of the access point device identifier to a term associated with either a public status or a private status of the access point device. In an embodiment, the access point device identifier can be an SSID, such as for a Wi-Fi network, whereby the SSID can be parsed into keywords that can be compared to the term. Ranking and/or white/blacklisting can be performed based on the analysis of the access point device identifier.
Abstract:
Determining a location quality based on base station identification is disclosed. The location quality can be based on an error attributed to a location determined based on historical data related to an identified base station. Application of supplemental data to the historical base station data can improve location quality by reducing the error. Supplemental data can comprise Voronoi data, geographic data, historical UE density data, historical UE timing advance data, or combinations thereof. Voronoi data can be associated with an area less than a service area of the base station. Geographic data can indicate areas where UEs are not likely to be located. UE density data can indicate probably UE locations. Timing advance data can indicate annular regions where a UE should be located. As such, the supplemental data can constrain a location determined for a UE and correspondingly can reduce error associated with the location.
Abstract:
A network access credential can be shared among devices based on location information for a device. Location information can include timed fingerprint location information. In an aspect, location information can be associated with a location of user equipment. This location information can be correlated with network access credentials. Location information can be used to access a relevant network access credential. The relevant network access credential can be shared with other devices. In an embodiment, sharing a network access credential can be between mobile devices. In another embodiment, sharing a network access credential can be between a remote computing device and a mobile device. Sharing a credential can allow for access to a network without having to generate or input new credentials.
Abstract:
A method of managing network resource usage of a mobile communications device includes initiating registration of the mobile communications device with a wireless wide area communications network. The method includes receiving a region indicator from the wireless wide area communications network in response to the initiating. The method includes selectively communicating by the mobile communications device with a second communications network according to a rules profile associated with the region indicator. The region indicator may be a country code or network code. The rules profile may be one of a plurality of rules profiles identified based on the region indicator. Individual rules profiles of the plurality of rules profiles specify at least one of time of day constraints, access point identifier constraints, and performance threshold constraints.
Abstract:
A network access credential can be shared among devices based on location information for a device. Location information can include timed fingerprint location information. In an aspect, location information can be associated with a location of user equipment. This location information can be correlated with network access credentials. Location information can be used to access a relevant network access credential. The relevant network access credential can be shared with other devices. In an embodiment, sharing a network access credential can be between mobile devices. In another embodiment, sharing a network access credential can be between a remote computing device and a mobile device. Sharing a credential can allow for access to a network without having to generate or input new credentials.
Abstract:
A method includes receiving, at a first computing device, first data associated with a performance indicator of a wireless wide area network for a first time period. The method also includes determining, at the first computing device, whether the performance indicator satisfies a performance threshold. The method further includes, based on determining that the performance indicator does not satisfy the performance threshold, offloading one or more communication devices from the wireless wide area network so that the performance indicator satisfies the performance threshold. The method finally includes sending a first instruction to a second computing device. The second computing device enables one or more access points to provide mobile communication services to the one or more communication devices.
Abstract:
A network access credential can be shared among devices based on location information for a device. Location information can include timed fingerprint location information. In an aspect, location information can be associated with a location of user equipment. This location information can be correlated with network access credentials. Location information can be used to access a relevant network access credential. The relevant network access credential can be shared with other devices. In an embodiment, sharing a network access credential can be between mobile devices. In another embodiment, sharing a network access credential can be between a remote computing device and a mobile device. Sharing a credential can allow for access to a network without having to generate or input new credentials.
Abstract:
Credentials, such as passwords for wireless access points, are managed and shared using blockchain technology. For instance, a transaction may be generated using information and a set of conditions. A requester user device seeking access to a wireless access point may request the password from the blockchain fabric using a unique identifier for the wireless access point and may satisfy other conditions from the set of conditions which determines access to the password by the requester.
Abstract:
The location of a mobile device may be determined based on information that includes the signal strength of nearby radiation sources. The system may disregard information associated with radiation sources that are determined to be mobile.