摘要:
Systems, computer-implemented methods, and tangible computer-readable media for generating a pronunciation model. The method includes identifying a generic model of speech composed of phonemes, identifying a family of interchangeable phonemic alternatives for a phoneme in the generic model of speech, labeling the family of interchangeable phonemic alternatives as referring to the same phoneme, and generating a pronunciation model which substitutes each family for each respective phoneme. In one aspect, the generic model of speech is a vocal tract length normalized acoustic model. Interchangeable phonemic alternatives can represent a same phoneme for different dialectal classes. An interchangeable phonemic alternative can include a string of phonemes.
摘要:
Disclosed are systems, methods and computer readable media for applying a multi-state barge-in acoustic model in a spoken dialogue system comprising the steps of (1) presenting a prompt to a user from the spoken dialog system. (2) receiving an audio speech input from the user during the presentation of the prompt, (3) accumulating the audio speech input from the user, (4) applying a non-speech component having at least two one-state Hidden Markov Models (HMMs) to the audio speech input from the user, (5) applying a speech component having at least five three-state HMMs to the audio speech input from the user, in which each of the five three-state HMMs represents a different phonetic category, (6) determining whether the audio speech input is a barge-in-speech input from the user, and (7) if the audio speech input is determined to be the barge-in-speech input from the user, terminating the presentation of the prompt.
摘要:
Disclosed are systems and methods for training a barge-in-model for speech processing in a spoken dialogue system comprising the steps of (1) receiving an input having at least one speech segment and at least one non-speech segment, (2) establishing a restriction of recognizing only speech states during speech segments of the input and non-speech states during non-speech segments of the input, (2) generating a hypothesis lattice by allowing any sequence of speech Hidden Markov Models (HMMs) and non-speech HMMs, (4) generating a reference lattice by only allowing speech HMMs for at least one speech segment and non-speech HMMs for at least one non-speech segment, wherein different iterations of training generates at least one different reference lattice and at least one reference transcription, and (5) employing the generated reference lattice as the barge-in-model for speech processing.
摘要:
A method includes receiving a command to provide media content configured to be sent to a display device for display at a particular scan rate. The media content includes audio data and video data. The method includes identifying high priority segments of the media content based on the audio data. The high priority segments are to be displayed by the display device at a presentation rate such that the high priority segments displayed at the presentation rate correspond to the media content displayed at the particular scan rate. The method also includes sending the high priority segments to the display device to provide video content and audio content of the requested media content for display.
摘要:
Disclosed herein are methods, systems, and computer-readable storage media for automatic speech recognition. The method includes selecting a speaker independent model, and selecting a quantity of speaker dependent models, the quantity of speaker dependent models being based on available computing resources, the selected models including the speaker independent model and the quantity of speaker dependent models. The method also includes recognizing an utterance using each of the selected models in parallel, and selecting a dominant speech model from the selected models based on recognition accuracy using the group of selected models. The system includes a processor and modules configured to control the processor to perform the method. The computer-readable storage medium includes instructions for causing a computing device to perform the steps of the method.
摘要:
Disclosed herein are systems, computer-implemented methods, and computer-readable storage media for handling expected repeat speech queries or other inputs. The method causes a computing device to detect a misrecognized speech query from a user, determine a tendency of the user to repeat speech queries based on previous user interactions, and adapt a speech recognition model based on the determined tendency before an expected repeat speech query. The method can further include recognizing the expected repeat speech query from the user based on the adapted speech recognition model. Adapting the speech recognition model can include modifying an acoustic model, a language model, and a semantic model. Adapting the speech recognition model can also include preparing a personalized search speech recognition model for the expected repeat query based on usage history and entries in a recognition lattice. The method can include retaining unmodified speech recognition models with adapted speech recognition models.
摘要:
A system and method for performing speech recognition is disclosed. The method comprises receiving an utterance, applying the utterance to a recognizer with a language model having pronunciation probabilities associated with unique word identifiers for words given their pronunciations and presenting a recognition result for the utterance. Recognition improvement is found by moving a pronunciation model from a dictionary to the langue model.
摘要:
A method is disclosed for applying a multi-state barge-in acoustic model in a spoken dialogue system. The method includes receiving an audio speech input from the user during the presentation of a prompt, accumulating the audio speech input from the user, applying a non-speech component having at least two one-state Hidden Markov Models (HMMs) to the audio speech input from the user, applying a speech component having at least five three-state HMMs to the audio speech input from the user, in which each of the five three-state HMMs represents a different phonetic category, determining whether the audio speech input is a barge-in-speech input from the user, and if the audio speech input is determined to be the barge-in-speech input from the user, terminating the presentation of the prompt.
摘要:
Disclosed are systems and methods for training a barge-in-model for speech processing in a spoken dialogue system comprising the steps of (1) receiving an input having at least one speech segment and at least one non-speech segment, (2) establishing a restriction of recognizing only speech states during speech segments of the input and non-speech states during non-speech segments of the input, (2) generating a hypothesis lattice by allowing any sequence of speech Hidden Markov Models (HMMs) and non-speech HMMs, (4) generating a reference lattice by only allowing speech HMMs for at least one speech segment and non-speech HMMs for at least one non-speech segment, wherein different iterations of training generates at least one different reference lattice and at least one reference transcription, and (5) employing the generated reference lattice as the barge-in-model for speech processing.
摘要:
Disclosed herein are systems, computer-implemented methods, and computer-readable media for speech recognition. The method includes receiving speech utterances, assigning a pronunciation weight to each unit of speech in the speech utterances, each respective pronunciation weight being normalized at a unit of speech level to sum to 1, for each received speech utterance, optimizing the pronunciation weight by (1) identifying word and phone alignments and corresponding likelihood scores, and (2) discriminatively adapting the pronunciation weight to minimize classification errors, and recognizing additional received speech utterances using the optimized pronunciation weights. A unit of speech can be a sentence, a word, a context-dependent phone, a context-independent phone, or a syllable. The method can further include discriminatively adapting pronunciation weights based on an objective function. The objective function can be maximum mutual information (MMI), maximum likelihood (MLE) training, minimum classification error (MCE) training, or other functions known to those of skill in the art. Speech utterances can be names. The speech utterances can be received as part of a multimodal search or input. The step of discriminatively adapting pronunciation weights can further include stochastically modeling pronunciations.