摘要:
A channel structure has at least two channel sets. Each channel set contains multiple channels and is associated with a specific mapping of the channels to the system resources available for data transmission. Each channel set may be defined based on a channel tree having a hierarchical structure. To achieve intra-cell interference diversity, the channel-to-resource mapping for each channel set is pseudo-random with respect to the mapping for each remaining channel set. In each scheduling interval, terminals are scheduled for transmission on the forward and/or reverse link. The scheduled terminals are assigned channels from the channel sets. Multiple terminals may use the same system resources and their overlapping transmissions may be separated in the spatial domain. For example, beamforming may be performed to send multiple overlapping transmissions on the forward link, and receiver spatial processing may be performed to separate out multiple overlapping transmissions received on the reverse link.
摘要:
Methods and apparatuses are disclosed that utilize the discrete Fourier transform of time domain responses to generate beamforming weights for wireless communication. In addition, in some embodiments frequency subcarriers constituting less than all of the frequency subcarriers allocated for communication to a user may utilized for generating the beamforming weights.
摘要:
Methods and apparatuses are disclosed that utilize the discrete Fourier transform of time domain responses to generate beamforming weights for wireless communication. In addition, in some embodiments frequency subcarriers constituting less than all of the frequency subcarriers allocated for communication to a user may utilized for generating the beamforming weights.
摘要:
A method and apparatus for transmitting and processing a QuickChannelInfo block is described. It is determined if a superframe is with odd superframe index. A QuickChannelInfo block is transmitted in every superframe with an odd superframe index. The contents of the QuickChannelInfo block are changed in accordance with the QuickChannelInfo Validity field of the QuickChannelInfo block. It is determined if multi-carrier mode is MultiCarrierOn. The QuickChannelInfo block is transmitted on each carrier. The QuickChannelInfo block is transmitted over the communication. The QuickChannelInfo block is processed after the QuickChannelInfo block is received over a communication link.
摘要:
Transmission patterns for pilot symbols transmitted from a mobile station or base station are provided. The pattern allows for improved receipt of the pilot symbols transmitted for frequency selective channels and users. In addition, schemes for improving the ability to multiplex pilot symbols without interference and/or biasing from different mobile stations over the same frequencies and in the same time slots.
摘要:
Transmission patterns for pilot symbols transmitted from a mobile station or base station are provided. The pattern allows for improved receipt of the pilot symbols transmitted. In addition, schemes for improving the ability to multiplex pilot symbols without interference and/or biasing from different mobile stations over the same frequencies and in the same time slots.
摘要:
Techniques for adjusting transmit power to mitigate both intra-sector interference to a serving base station and inter-sector interference to neighbor base stations are described. The amount of inter-sector interference that a terminal may cause may be roughly estimated based on the total interference observed by each neighbor base station, channel gains for the serving and neighbor base stations, and the current transmit power level. The transmit power may be decreased if high interference is observed by a neighbor base station and increased otherwise. The transmit power may be adjusted by a larger amount and/or more frequently if the terminal is located closer to the neighbor base station observing high interference and/or if the current transmit power level is higher, and vice versa. The intra-sector interference is maintained within an acceptable level by limiting a received SNR for the terminal to be within a range of allowable SNRs.
摘要:
Techniques for adjusting transmit power to mitigate both intra-sector interference to a serving base station and inter-sector interference to neighbor base stations are described. The amount of inter-sector interference that a terminal may cause may be roughly estimated based on the total interference observed by each neighbor base station, channel gains for the serving and neighbor base stations, and the current transmit power level. The transmit power may be decreased if high interference is observed by a neighbor base station and increased otherwise. The transmit power may be adjusted by a larger amount and/or more frequently if the terminal is located closer to the neighbor base station observing high interference and/or if the current transmit power level is higher, and vice versa. The intra-sector interference is maintained within an acceptable level by limiting a received SNR for the terminal to be within a range of allowable SNRs.
摘要:
Techniques for performing erasure detection and power control for a transmission without error detection coding are described. For erasure detection, a transmitter transmits codewords via a wireless channel. A receiver computes a metric for each received codeword, compares the computed metric against an erasure threshold, and declares the received codeword to be “erased” or “non-erased”. The receiver dynamically adjusts the erasure threshold based on received known codewords to achieve a target level of performance. For power control, an inner loop adjusts the transmit power to maintain a received signal quality (SNR) at a target SNR. An outer loop adjusts the target SNR based on the status of received codewords (erased or non-erased) to achieve a target erasure rate. A third loop adjusts the erasure threshold based on the status of received known codewords (“good”, “bad”, or erased) to achieve a target conditional error rate.
摘要:
According to one aspect of the invention, a method is provided in which a group of users in a system that employs a retransmission mechanism such as Automatic Repeat Request (ARQ) is divided into multiple sub-groups of users. Each user is assigned a number of channels for transmission of information. The number of channels assigned to each user is determined based, at least in part, on the number of the sub-groups and a number of channels available in the system. Transmission intervals are alternated among the multiple sub-groups such that only one of the sub-groups of users is allowed to transmit information during any transmission interval. An idle interval during which a particular user in the first group does not transmit information is used as a waiting period for acknowledgement of a previous transmission by the particular user.