Abstract:
Systems and methodologies are described that facilitate enhanced resource scheduling for a wireless communication system. As described herein, packets associated with a common flow that arrive within a predetermined time period following a leading packet associated with the flow can be grouped into respective packet bursts. Subsequently, system bandwidth, transmit power, and/or other communication resources can be scheduled based on an analysis of the respective packet bursts. As provided herein, by analyzing respective packet bursts in lieu of individual packets, computational and resource overhead required for resource scheduling can be significantly reduced. In one example described herein, a resource schedule is determined by selecting one or more flows to be assigned bandwidth from among a plurality of flows based on an analysis of packet bursts respectively associated with the flows. Sufficient bandwidth can subsequently be scheduled for the selected flows for transmission of the respectively associated packet bursts.
Abstract:
A mechanism is described for facilitating automatic music-queuing, karaoke managing, and track mixing. A method, as described herein, includes receiving, at a computing device, a guest elevation request from a guest client device in communication with the computing device including a server computing device serving as a host computer, where the guest elevation request includes prioritizing a request for an audio track or a video clip placed by a user via the guest client device. The method may further include performing analysis of the guest elevation request to determine whether to approve or disapprove the guest elevation request, and elevating the guest client device associated with the guest elevation request if the guest elevation request is approved. The method may further include communicating the approval of the guest elevation request and the elevation of the guest client device to the guest client device over a communication network.
Abstract:
A network device connected to a base station via a backhaul connection may be operable to determine whether the backhaul connection is congested. The determination may be based on a periodic data cap imposed on the backhaul connections. In response to a determination that the backhaul connection is congested, the network device may configure one or more cellular communication parameters of one or more of the plurality of base stations. The determination may be based on one or more of: a total amount of data consumed over the backhaul connection during a current time period, a traffic load on the backhaul connection, and an amount of time remaining in the current time period.
Abstract:
A network device may make a determination that a first backhaul connection, which serves a first base station, is congested and that a second backhaul connection, which serves a second base station, is not congested. This determination may be made based on a first periodic data cap imposed (on the first backhaul connection, a traffic load on the first backhaul connection, a second periodic data cap imposed on the second backhaul connection, and a traffic load on the second backhaul connection. In response to the determination, the network device may configure a value of a cellular communication parameter utilized by one or both of the base stations. The configuration may comprise periodic adjustments of the value of the cellular communication parameter. The periodic adjustments may cause one or more mobile devices to be cyclically handed-over between the first base station and the second base station.
Abstract:
The apparatus and methods described herein are used to provide data between an application and a modem. One method includes providing data in application data units from the application to the modem, transmitting the data from the modem to a receiver, and reporting by the modem to the application, whether each application data unit has been successfully transmitted from the modem to the receiver.
Abstract:
Systems and methodologies are described that facilitate dynamically adjusting scheduling priorities in relation to a combination of delay sensitive flows with delay requirements and best effort flows. The systems and methodologies provide optimal and efficient techniques to enable real time adjustment and assignment of bandwidth for a combination of best effort flows and delay sensitive flows. In particular, the bandwidth allocation is adjusted for each data packet such that delay requirements are met and the remaining bandwidth can be assigned to best effort flows.
Abstract:
The apparatus and methods described herein are used to provide a communication quality feedback of an end-to-end communication path between an application transmitter and an application receiver. One method includes transmitting data from the application transmitter to the application receiver via the end-to-end communication path, the end-to-end communication path having at least one wireless link with a wireless transmitter and a wireless receiver, generating, at the wireless transmitter, a first communication quality feedback message, and transmitting the first communication quality feedback message from the wireless transmitter to the application transmitter in a standardized format.
Abstract:
Methods and apparatus which reduce or completely eliminate non-shift based divisions as part of estimating transmitted symbols and/or generating slicing parameters corresponding to two symbol transmission streams in a wireless communication system are described. A linear least squares error estimation filtering module performs symbol estimations and/or slicing parameter generation while avoiding non-shift based division operations. The linear least squares estimation module generates intermediate parameters, and implements equations which facilitate symbol estimation utilizing shift based divisions while avoiding non-shift based divisions.
Abstract:
Systems and methodologies are described that facilitate dynamically adjusting scheduling priorities in relation to a combination of delay sensitive flows with delay requirements and best effort flows. The systems and methodologies provide optimal and efficient techniques to enable real time adjustment and assignment of bandwidth for a combination of best effort flows and delay sensitive flows. In particular, the bandwidth allocation is adjusted for each data packet such that delay requirements are met and the remaining bandwidth can be assigned to best effort flows.
Abstract:
Systems and methodologies are described that facilitate enhanced resource scheduling for a wireless communication system. As described herein, packets associated with a common flow that arrive within a predetermined time period following a leading packet associated with the flow can be grouped into respective packet bursts. Subsequently, system bandwidth, transmit power, and/or other communication resources can be scheduled based on an analysis of the respective packet bursts. As provided herein, by analyzing respective packet bursts in lieu of individual packets, computational and resource overhead required for resource scheduling can be significantly reduced. In one example described herein, a resource schedule is determined by selecting one or more flows to be assigned bandwidth from among a plurality of flows based on an analysis of packet bursts respectively associated with the flows. Sufficient bandwidth can subsequently be scheduled for the selected flows for transmission of the respectively associated packet bursts.