Abstract:
Use of an additive mixture containing a linear polypropylene and at least one additive in a polypropylene composition comprising said additive mixture and a branched polypropylene to reduce the gel index of said polypropylene composition.
Abstract:
Propylene copolymer having a melt flow rate MFR2 (230° C.) in the range of 2.5 to 12.0 g/10 min, a xylene cold soluble content (XCS) in the range of 20.0 to 45.0 wt.-%, a comonomer content in the range of more than 7.5 to 12.0 wt.-%, wherein further the comonomer content of xylene cold soluble (XCS) fraction of the propylene copolymer is in the range of 16.0 to 28.0 wt.-%.
Abstract:
The present invention relates to a polymer composition comprising (A) from 60 to 90 wt % of a non-elastomeric polyethylene; (B) from 9.0 to 38 wt % of an elastomer; wherein onto component (A) or components (A) and (B) an acid grafting agent (C) has been grafted in an amount of from 0.01 to 3.0 wt %, all based on the total weight of the polymer composition, and wherein the polymer composition has two distinct peaks and a valley between said peaks in the GPC curve and a Z value, determined from the areas below the two peaks of the GPC curve, of at least −0.3, wherein the Z-value is determined according to formula (I) Z=s/Abs(B−A) (I) wherein Abs(B−A) is the absolute value of (B−A); A=the area, between the tangent parallel to the MW axis going through log M (Min) and the LS15 signal, from log M of 5.1 to log M value where the LS signal is minimum log M (Min), in the log M range between 5.1 and 6; B=the area, between the tangent parallel to the MW axis going through log M (Min) and the LS 15 signal, from log M(Min) to the point where the LS signal is crossed again; and s is the slope between the two peaks of the GPC curve, defined at log M of 5.1 and 6, wherein the GPC curve is defined as the concentration normalized LS 15 signal along the molecular weight of conventional GPC, obtained from the GPC-VISC-LS analysis, a multi-layer structure such as a coated metal pipe, comprising one layer comprising said polymer composition and the use of said polymer composition as adhesive polymer composition and for the production of a multi-layer structure.
Abstract:
The present invention provides a process for extruding and pelletising a propylene copolymer. The copolymer has a content of comonomer from 5 to 40% by mole, a melt flow rate MFR2 measured at 230° C. under a load of 2.16 kg of from 0.5 to 15 g/10 min and a content of cold xylene soluble material of from 20 to 60% by weight. The process comprises extruding the propylene copolymer through a die plate into an underwater pelletiser and cutting strands of the propylene copolymer into pellets in the underwater pelletiser, wherein the ratio of the mass flow rate of the propylene copolymer to the mass flow rate of the cooling water is from 0.020 to 0.060; and the propylene copolymer comprises a polymeric nucleating agent.
Abstract:
The present invention relates to a polymer composition comprising (A) from 60 to 90 wt % of a non-elastomeric polyethylene; (B) from 9.0 to 38 wt % of an elastomer; wherein onto component (A) or components (A) and (B) an acid grafting agent (C) has been grafted in an amount of from 0.01 to 3.0 wt %, all based on the total weight of the polymer composition, and wherein the polymer composition has two distinct peaks and a valley between said peaks in the GPC curve and a Z value, determined from the areas below the two peaks of the GPC curve, of at least −0.3, wherein the Z-value is determined according to formula (I) Z=s/Abs(B−A) (I) wherein Abs(B−A) is the absolute value of (B−A); A=the area, between the tangent parallel to the MW axis going through log M (Min) and the LS15 signal, from log M of 5.1 to log M value where the LS signal is minimum log M (Min), in the log M range between 5.1 and 6; B=the area, between the tangent parallel to the MW axis going through log M (Min) and the LS 15 signal, from log M(Min) to the point where the LS signal is crossed again; and s is the slope between the two peaks of the GPC curve, defined at log M of 5.1 and 6, wherein the GPC curve is defined as the concentration normalized LS 15 signal along the molecular weight of conventional GPC, obtained from the GPC-VISC-LS analysis, a multi-layer structure such as a coated metal pipe, comprising one layer comprising said polymer composition and the use of said polymer composition as adhesive polymer composition and for the production of a multi-layer structure.
Abstract:
Moulded articles comprising a polypropylene homopolymer with rather high melt flow rate, high stiffness, improved optical properties and an advantageous balance between stiffness and optical properties.
Abstract:
Extruded articles based on a nucleated polypropylene homopolymer showing improved optical properties such as haze or relative haze and a good balance between optical and thermomechanical properties.
Abstract:
The present invention relates to a polypropylene composition comprising a branched polypropylene (b-PP) having high melt strength (HMS). Furthermore, the present invention also relates to a method for providing the corresponding polypropylene having composition comprising the branched polypropylene (b-PP) and to a foam with the polypropylene composition comprising the branched polypropylene (b-PP). The branched polypropylene (b-PP) is based on a random copolymer with a small amount of ethylene.
Abstract:
Molded article comprising a propylene copolymer having a xylene cold soluble content (XCS) in the range of 35 to 60 wt.-% and a comonomer content in the range of 7.0 to 17.0 wt-%, wherein further the propylene copolymer fulfills inequation (I), wherein Co (total) is the comonomer content [wt.-%] of the propylene copolymer Co (XCS) is the comonomer content [wt.-%] of the xylene cold soluble fraction (XCS) of the propylene copolymer. Co ( total ) Co ( XCS ) ≥ 0.50 ( I )
Abstract:
Blow molded article comprising a propylene copolymer having a MFR2 (230° C.) in the range of more than 2.0 to 12.0 g/10 min, a comonomer content in the range of 4.0 to below 4.0 mol.-%, a melting temperature in the range of 125 to below 143° C., and a xylene cold soluble fraction (XCS) in the range of above 15.0 to 40.0 wt.-%.