Abstract:
A wireless communication device with a plurality of transceivers analyzes a plurality of throughput profiles corresponding to the plurality of transceivers to determine a division of a total throughput into a plurality of individual throughputs corresponding to the plurality of transceivers. Data is transmitted to a remote communication device by allocating data for transmission among the plurality of transceivers based on the plurality of individual throughputs.
Abstract:
A radio frequency (RF) transceiver includes an RF transmitter that generates a transmit signal based on outbound data for transmission to a remote communication device in a frequency band. An RF receiver generates inbound data based on a received signal from the remote communication device in the frequency band. An antenna section includes a shared antenna configurable for full-duplex transceiving of the transmit signal and the received signal and a center-tap isolation transformer configurable to isolate the transmit signal from the received signal.
Abstract:
A radio frequency (RF) transceiver includes an RF transmitter that generates a transmit signal to a remote communication device based on outbound data. An RF receiver generates inbound data based on a received signal from the remote communication device. The RF receiver includes a channel equalizer and generates post equalization performance data. A beamform controller generates a plurality of beamforming weights to adjust a beamforming pattern of an antenna array based on the post equalization performance data.
Abstract:
A wireless communication device includes a polarity setting module configured to set a plurality of polarity modes for the wireless communication with the plurality of external devices. The plurality of polarity modes includes selected ones of at least: a first polarity mode, and a second polarity mode. The polarity setting module sets the plurality of polarity modes based on information received from the plurality of external devices. A framing module is configured to generate data for transmission to the plurality of external devices based on the plurality of polarity modes set by the polarity setting module.
Abstract:
A wireless transceiver includes a transmit path configured to generate a radio frequency (RF) transmit signal for transmission via an antenna, the transmit path generating a feedforward signal having at least one adjustable phase. A receive path is configured to receive an RF receive signal via the antenna. A circulator-based duplexer includes a circulator configured to couple the transmit signal from the transmit path to the antenna and to couple the receive signal from the antenna to the receive path. A controller is configured to process feedback from the receive path and to control the at least one adjustable phase to cancel portions of the transmit signal on the receive path.
Abstract:
A wireless transceiver includes a transmit path configured to generate a radio frequency (RF) transmit signal for transmission via an antenna. A receive path is configured to receive an RF receive signal via the antenna. A circulator-based quadrature duplexer includes an in-phase circulator and a quadrature-phase circulator configured to couple the transmit signal from the transmit path to the antenna while generating a residual transmit signal on the receive path, and to couple the receive signal from the antenna to the receive path. The circulator-based quadrature duplexer promotes cancellation of the residual transmit signal on the receive path.
Abstract:
A radio frequency (RF) transceiver includes an RF transmitter that generates a transmit signal to a remote communication device based on outbound data. An RF receiver generates inbound data based on a received signal from the remote communication device. The RF receiver includes a channel equalizer and generates post equalization performance data. A beamform controller generates a plurality of beamforming weights to adjust a beamforming pattern of an antenna array based on the post equalization performance data.
Abstract:
A wireless transceiver includes a transmit path configured to generate a radio frequency (RF) transmit signal for transmission via an antenna, the transmit path generating a feedforward signal having at least one adjustable phase. A receive path is configured to receive an RF receive signal via the antenna. A circulator-based duplexer includes a circulator configured to couple the transmit signal from the transmit path to the antenna and to couple the receive signal from the antenna to the receive path. A controller is configured to process feedback from the receive path and to control the at least one adjustable phase to cancel portions of the transmit signal on the receive path.
Abstract:
A configurable wireless communication device includes a baseband processing module, a transmitter section, a receiver section, an antenna, transmit/receive isolation circuits, high frequency switches, and a configuration module. The baseband processing module converts outbound data into an outbound symbol stream and converts an inbound symbol stream into inbound data. The transmitter section converts the outbound symbol stream into an outbound signal and the receiver section converts an inbound signal into the inbound symbol stream. The configuration module, in a power combining mode, couples, via a set of high frequency switches, the antenna to a set of transmit/receive isolation circuits, wherein a number of the transmit/receive isolation circuits in the set of transmit/receive isolation circuits is based on a desired combined transmit power.
Abstract:
A RF transmitter includes a power amplifier that generates a transmit signal modulated with outbound data for transmission to a remote communication device via an antenna section. A supply voltage to power the power amplifier is adjusted based on an average power tracking signal. A reflected power from the antenna section is measured. The average power tracking signal is adjusted based on the reflected power to compensate for the changes in impedance of the antenna section and to maintain a desired linearity.