Abstract:
A method of compensating carrier tone generation between duty cycles includes receiving a carrier frequency signal and a reference frequency signal, where the carrier frequency signal is mixed with a communication signal in a signal path. The method includes determining a first and second time differences between the carrier frequency signal and the reference frequency signal at respective clock edges of the reference frequency signal. The method includes converting the first time difference to a first corresponding phase value and the second time difference to a second corresponding phase value based on an operating frequency, and determining a phase difference between the first corresponding phase value and the second corresponding phase value. In turn, the method includes adjusting the communication signal with the phase difference independent of the signal path to maintain phase continuity in the signal path between the duty cycles.
Abstract:
A RF transmitter includes a power amplifier that generates a transmit signal modulated with outbound data for transmission to a remote communication device via an antenna section. A supply voltage to power the power amplifier is adjusted based on an average power tracking signal. A reflected power from the antenna section is measured. The average power tracking signal is adjusted based on the reflected power to compensate for the changes in impedance of the antenna section and to maintain a desired linearity.
Abstract:
Methods, systems, and apparatuses are described for compensating for an undesired fractional spur due to a PLL in a communication system. The communication system includes a time-to-digital converter (TDC) that is configured to execute in parallel to the PLL. The TDC is configured to determine a phase difference between a reference frequency and an output oscillation signal provided by the PLL. The phase difference is received by a processor to estimate particular characteristics of the undesired fractional spur, and the estimate of the characteristics is used to construct an estimate of the undesired fractional spur.
Abstract:
Average Power Tracking (APT) is a technique that can be utilized for vary the supply voltage to a power amplifier (PA) on a timeslot basis in order to reduce power consumption of the PA. Systems and methods are provided for maximizing power savings associated with the PA by utilizing APT in a continuous and aggressive manner. Additionally, the systems and methods can further compensate for variations in temperature, frequency, antenna load, and peak to average power ratio (PAPR) without sacrificing the power savings.
Abstract:
A device implementing the subject scalable radio frequency communication system includes one or more primary radio frequency integrated circuits (RFICs) and at least one secondary RFIC. Each of the one or more primary RFICs is configured to receive an intermediate frequency (IF) signal from a baseband processor, upconvert the IF signal to a radio frequency (RF) signal, and transmit the RF signal to one or more secondary RFICs. The secondary RFICs under each of the one or more primary RFICs are configured to receive the RF signal from the corresponding primary RFIC, phase shift and amplify the RF signal, and transmit the RF signal via a plurality of antenna elements.
Abstract:
A wireless communication system and method that includes configurable Carrier Aggregation (CA) and/or Multiple-input Multiple-output (MIMO) operational modes. In CA, multiple carriers (i.e., channel bundling) are aggregated and jointly used for transmission to/from a single terminal. Downlink inter-band carrier aggregation increases the downlink data rates by routing two signals, received in different frequency bands, simultaneously to two active receivers in the RF transceiver. MIMO utilizes two additional receivers as diversity paths and the frequency generation can be shared between main and diversity path for each carriers.
Abstract:
A wireless communication device front end includes power amplifiers, low noise amplifiers, and a distributed antenna system. The distributed antenna system includes antennas and an antenna coupling circuit. The antenna coupling circuit receives an outbound signal of a first wireless communication from a power amplifier and sends first and second components of the outbound signal to first and second antennas. The antenna coupling circuit also receives an inbound signal of a second wireless communication from a third antenna and sends the inbound signal to a low noise amplifier. The third antenna is a distance from the first antenna and from the second antenna such that, in air, the outbound signal is attenuated at the third antenna.
Abstract:
Methods, systems, and apparatuses are described for compensating for an undesired fractional spur due to a PLL in a communication system. The communication system includes a time-to-digital converter (TDC) that is configured to execute in parallel to the PLL. The TDC is configured to determine a phase difference between a reference frequency and an output oscillation signal provided by the PLL. The phase difference is received by a processor to estimate particular characteristics of the undesired fractional spur, and the estimate of the characteristics is used to construct an estimate of the undesired fractional spur.
Abstract:
A system implementing switching diversity in a scalable radio frequency communication system includes a primary radio frequency integrated circuit (RFIC), a first secondary RFIC, and a second secondary RFIC. The first secondary RFIC is configured to receive a radio frequency (RF) signal from a device via antenna elements based on a first beam setting, and transmit the RF signal to the primary RFIC. The primary RFIC is configured to receive the RF signal; downconvert the RF signal to an intermediate frequency (IF) signal; transmit the IF signal to a baseband processor; receive, from the baseband processor, a control signal including a second beam setting; and transmit the control signal to the second secondary RFIC. The second secondary RFIC is configured to receive the control signal from the first primary RFIC, and receive the first RF signal from the device via second antenna elements based on the second beam setting.
Abstract:
A device implementing a distributed dynamic configuration of a scalable radio frequency communication system includes a primary radio frequency (RF) integrated circuit (RFIC) and at least one secondary RFIC. The primary RFIC includes at least one phase shifter, and the primary RFIC may be configured to apply a first phase shift to an RF signal using the at least one first phase shifter, and to transmit the RF signal to at least one secondary RFIC. The at least one secondary RFIC includes at least one second phase shifter, and the at least one secondary RFIC may be configured to apply a second phase shift to the RF signal using the at least one second phase shifter, and to transmit the RF signal via at least one antenna element. The first and second phase shifts may be received by the primary RFIC from a baseband processor.