Abstract:
A bulb for an electrodeless lamp system uses Sn or halogenide of the Sn as a primary bulb fill for obtaining continued spectrum when it is discharged, and the halogenide of the Sn is SnBr2. Therefore, high photoefficiency and superior color rendering can be obtained, and less ultraviolet ray than that of sulfur is radiated and warm feeling can be obtained visually.
Abstract:
In a plasma lamp system, a bulb is filled with both metal halide and mercury as primary light-emitting materials, operating pressure of the metal halide is 0.1˜10 atm, and operating pressure of the mercury is 30˜150 atm, thereby improving a point source of light characteristic and a spectrum characteristic of light. Therefore, the plasma lamp system can be optimally applied to an optical system that requires a point source of light, and can maximize its lighting efficiency.
Abstract:
A bulb for an electrodeless lamp comprises: an envelope through which the light can be permeated; a filled material filled in the envelope for emitting the light as being excited by high frequency energy; and buffer gas, wherein the buffer gas comprises first buffer gas, and second buffer gas having a partial pressure less than 1% of the partial pressure of the first buffer gas in order to reduce a discharging voltage and lighting time, and thereby, the re-lighting after putting out the light can be performed easily and the re-lighting time is reduced to improve the convenience of the user and the reliability of electrodeless lamp.
Abstract:
A sulfur lamp including a power supply that supplies electrical power includes a transparent bulb having a space inside that contains sulfur. Additionally, a plurality of electrodes may be provided on an outside surface of the transparent bulb. Further, one end of each electrode may be connected to the power supply so that the sulfur is excited by an electric discharge to emit light. Therefore, the changing of sulfur contained in the space of the bulb into a plasma phase using the electrodes (not microwaves) avoids a need to use a magnetron, which has a low energy transfer rate, thereby increasing a system efficacy and saving a cost of replacing the magnetron with a new one.
Abstract:
Provided is an electrodeless sulfur lamp including a power supply supplying electrical power, a transparent bulb which has a space inside it, with sulfur being contained in the space, and a coil connected to the power supply, which is wound around an outside surface of the transparent bulb and which induces electric discharge by combining magnetic fields. The exclusion of the magnetron in the sulfur lamp increase a system efficacy and saves a cost for the magnetron. Also, it is possible to prevent the coil from blocking light emitted from the main electric discharge sphere 11, because the coil is not wound around the main electric discharge sphere.
Abstract:
An electrodeless lighting system comprises: a first case in which a microwave generator, a waveguide for guiding microwave energy and a luminous part communicating with the waveguide, for emitting light by the microwave energy are installed, wherein one side of the first case is opened so that light from the luminous part is emitted to the outside; a second case coupled to the first case to open or close the opened one side of the first case and configured to pass the light from the luminous part; and a third case positioned at one outer side of the first case, in which a high voltage generator for supplying a high voltage to the microwave generator is installed. Accordingly, in the electrodeless lighting system, lateral lighting can be made like a streetlight, heat generating components and lighting components can be installed at separated spaces, respectively, and the generated heat can be smoothly emitted to the outside.
Abstract:
Provided is an electrodeless sulfur lamp including a power supply supplying electrical power, a transparent bulb which has a space inside it, with sulfur being contained in the space, and a coil connected to the power supply, which is wound around an outside surface of the transparent bulb and which induces electric discharge by combining magnetic fields. The exclusion of the magnetron in the sulfur lamp increase a system efficacy and saves a cost for the magnetron. Also, it is possible to prevent the coil from blocking light emitted from the main electric discharge sphere 11, because the coil is not wound around the main electric discharge sphere.
Abstract:
Disclosed is an electrodeless lighting system capable of being used as an optical source of an electronic device by being minimized and capable of obtaining an optimum impedance matching and controlling a resonance frequency. The electrodeless lighting system comprises: a magnetron for generating microwave and having an antenna through which the microwave is outputted; a resonator having a resonance space where the microwave is resonated and having an inner diameter partially different along a path that the microwave passes; a bulb installed inside the resonator and having a light emitting material therein for emitting light by the microwave energy; and a microwave feeder of which one side is connected to the antenna and another side thereof is connected to the bulb, for guiding microwave to the bulb, in which a ratio of an outer diameter of the microwave feeder and a ratio of an inner diameter of the resonator corresponding to the outer diameter of the microwave feeder are varied along a progressive direction of the microwave.
Abstract:
An electrodeless lighting system includes: a waveguide for guiding microwave energy generated from a microwave generator; and a resonator formed in a mesh structure allowing the microwave energy having passed the waveguide to resonate therein and passing light, and having around the bulb a microwave leakage preventing portion having a relatively low perforation ratio per unit area so that microwave energy is concentrated on the bulb positioned therein. Accordingly, leakage of microwaves is minimized and luminous efficiency is improved.
Abstract:
A low-output microwave lighting system includes: a rectifier for rectifying general AC power inputted through a power source unit and outputting a DC voltage; a power factor compensator for compensating a power factor of the DC voltage inputted through the rectifier; and an inverter circuit unit for receiving the power factor-compensated DC voltage and outputting an AC voltage through frequency varying. 120 Hz of ripple generated at a low output can be reduce, and it is driven at a frequency of 20 KHz or higher, so that a flicker phenomenon does not occur and a volume and weight in facility can be reduced.