Abstract:
A method for allocating aggressive signal carriers in a target band of a wireless communication network is provided. The network includes at least one long term evolution (LTE) node and at least one non-LTE transmission source. The target band includes at least two adjacent pairs of contiguous radio frequency (RF) channels. The method includes steps of scanning each contiguous RF channel of the target band to measure a respective value of non-LTE RF energy therein, determining, from the measured non-LTE RF energy, that a first one of the contiguous RF channels is occupied by a non-LTE carrier, and allocating an LTE carrier to a second one of the contiguous RF channels, different than the first one of the contiguous RF channels, based on the determination.
Abstract:
Managing connections to be established between clients and access points for the purposes of accessing wireless services is contemplated. The connections may be managed according to a predictive load balancing strategy where connections may be established and adjusted in anticipation of predicted client demands, such as to achieve an optimized throughput.
Abstract:
Ameliorating initial link setup in manage networks, self-organizing networks (SONs), systems, etc. of the type having capabilities sufficient to facilitate operations according to a common methodology is contemplated. The contemplated processes and systems may include ameliorating initial link setup when operating pursuant to the Fast Initial Link Setup (FILS) protocol defined in the Institute of Electrical and Electronics Engineers (IEEE) specification 802.11ai with use of a self-organizing network (SON) server to facilitate access point selection.
Abstract:
Systems and methods presented herein provide for powering of electronics. One powering system disclosed herein includes a database comprising subscription information for a plurality of network users and an electromagnetic energy source. The powering system also includes a communication hub colocated with the electromagnetic energy source and operable to establish a communication link with an electronic device of a first of the network users. The powering system also includes a network element communicatively coupled to the communication hub through a communication network to receive subscription information from the electronic device via the communication hub. The network element is further operable to access the database to verify the subscription information of the first user, and to direct the electromagnetic energy source to radiate towards the electronic device to power to the electronic device upon verification of the subscription information of the first user.
Abstract:
A mesh network may be established between a plurality of access points to facilitate load balancing for one or more of the access points. The mesh network may define a plurality of communication routes through the access points having capabilities sufficient to facilitate or mimic communications underperforming or being unavailable at the access point requesting load balancing.
Abstract:
A mesh network may be established between a plurality of access points to facilitate load balancing for one or more of the access points. The mesh network may define a plurality of communication routes through the access points having capabilities sufficient to facilitate or mimic communications underperforming or being unavailable at the access point requesting load balancing.
Abstract:
A Wi-Fi enabled Self Organizing Network system configured for prioritizing communication resources to emergency services communications is provided. The present system controls communication resources based on data from a communication requesting emergency services originating from a Wi-Fi Access Point (AP). Resources that may be controlled include but are not limited to bands, channels, AP transmission power levels, and Modulation and Code Schemes (MCS). The present system may be implemented in a cable MOS operator network.
Abstract:
Managing connections to be established between clients and access points for the purposes of accessing wireless services is contemplated. The connections may be managed according to a predictive load balancing strategy where connections may be established and adjusted in anticipation of predicted client demands, such as to achieve an optimized throughput.
Abstract:
Managing wireless access points and/or other devices providing wireless signaling to multiple clients is contemplated. The wireless access point may be managed according to a load balancing strategy directed towards achieving desired network throughput using forced disassociation of clients based on traffic type or other service related indicators and/or force disassociation of roaming partners based on neighboring access point capabilities.
Abstract:
A mesh network may be established between a plurality of access points to facilitate load balancing for one or more of the access points. The mesh network may define a plurality of communication routes through the access points having capabilities sufficient to facilitate or mimic communications underperforming or being unavailable at the access point requesting load balancing.