Abstract:
A radiation imaging system for performing a plurality of times of radiation imaging is provided. A readout circuit generates a value corresponding to a signal read out from each pixel. A control unit causes the readout circuit to generate a first pixel value corresponding to a signal read out from each pixel, and a first offset value of the readout circuit before starting the plurality of times of radiation imaging. The control unit causes the readout circuit to generate a second pixel value corresponding to a signal read out from each pixel, and a second offset value of the readout circuit during a plurality of times of radiation imaging. A correction unit corrects the second pixel value by using the first pixel value, the first offset value, and the second offset value.
Abstract:
A radiation imaging apparatus that includes a plurality of sensors, a readout unit and a control unit, wherein the control unit performs a first control of reading out signals from sensors after radiation irradiation is started, and a second control of outputting a control signal to end the radiation irradiation when a calculated value calculated based on an output of the readout unit in the first control reaches a reference value, and the control unit, in the first control, reads out the signals from the sensors by changing a signal amplification ratio of the readout unit such that a value of an output of the readout unit is not saturated, and, in the second control, calculates the calculated value by accumulating the output of the readout unit in consideration of the signal amplification ratio.
Abstract:
An imaging apparatus has an AEC function that can prevent irregularities in photographed images, without being increased in size. The imaging apparatus comprises a plurality of pixels arranged in a matrix shape, each of the plurality of pixels including a conversion element for converting radiation or light into an electric charge, a plurality of lines that are connected to the plurality of pixel units and that extend in different directions to each other, a current monitor circuit that monitors currents flowing in the plurality of lines, and an arithmetic unit that calculates a two-dimensional distribution by performing back-projection processing with respect to the currents flowing in the plurality of lines monitored by the current monitor circuit.
Abstract:
A radiographic image capturing apparatus includes: a pixel array in which a plurality of pixels outputting an electrical signal corresponding to radiation are arranged; a readout circuit section; and a member for preventing radiation from entering the readout circuit section. The pixel array includes a first region in which some pixels used for generating image signals are arranged, and a second region in which other pixels not used for generating the image signals are arranged in at least part of a region around the first region. From an outer side toward an inner side of the pixel array, an end on the inner side of the readout circuit section disposed in the second region, an end on the inner side of an orthogonal projection of the member to the pixel array, and an end on the inner side of the second region are arranged in this order.
Abstract:
A radiation imaging system for performing a plurality of times of radiation imaging is provided. A readout circuit generates a value corresponding to a signal read out from each pixel. A control unit causes the readout circuit to generate a first pixel value corresponding to a signal read out from each pixel, and a first offset value of the readout circuit before starting the plurality of times of radiation imaging. The control unit causes the readout circuit to generate a second pixel value corresponding to a signal read out from each pixel, and a second offset value of the readout circuit during a plurality of times of radiation imaging. A correction unit corrects the second pixel value by using the first pixel value, the first offset value, and the second offset value.
Abstract:
An imaging apparatus includes a pixel that generates charge; an integral amplifier that integrates charge transferred from the pixel; a low pass filter to which output of the integral amplifier is supplied and whose time constant is variable; first and second sample-and-hold circuits that sample and hold output of the low pass filter before and after the charge is transferred from the pixel to the integral amplifier, respectively; a differential circuit that outputs a difference between signals held by the first and second sample-and-hold circuits; and a control circuit that changes the time constant. The control circuit decreases the time constant after the sampling by the first sample-and-hold circuit ends, and increases the time constant in the middle of the sampling by the second sample-and-hold circuit.
Abstract:
A radiation image pickup system includes a correction coefficient calculation unit that calculates a correction coefficient using pixel output values of a plurality of pixels, and a correction unit that corrects pixel output values of a plurality of pixels using the correction coefficient. A drive control unit repeatedly resets an electric charge caused by a dark current of a plurality of pixels until a detection unit detects a start of radiation exposure. The reset operation is performed simultaneously for n rows that are not adjacent to each other, where n is an integer equal to or greater than 2. The correction coefficient calculation unit calculates the correction coefficient using pixel output values of pixels in a row subjected to the reset operation in a period from a start of radiation exposure to a start detection time and pixel output values of pixels in an adjacent row.
Abstract:
A radiation image pickup apparatus includes a pixel array including a plurality of pixels arranged in a matrix and configured to convert a radiant ray into electric signals, signal processors configured to output digital signals obtained in accordance with the electric signals output from the pixel array in parallel, and a controller configured to operate the signal processors after the signal processors enter a second power consumption state in which power consumption is higher than that of a first power consumption state from the first power consumption state after irradiation of a radiant ray to the pixel array is terminated, and to cause the signal processors to output digital signals after the signal processors are operated.
Abstract:
A radiation imaging apparatus includes pixels arranged to form pixel rows and pixel columns. The pixels include first pixels and second pixels whose sensitivity to radiation is lower than the first pixels. The apparatus further includes a signal lines arranged to correspond to the pixel columns, a readout circuit configured to read out a signal from the pixels via the signal lines, and a processing unit configured to decide a correction value using signals read out from the second pixels and correct signals read out from the first pixels using the correction value. An internal structure of the readout circuit has a period. The second pixels are arranged such that there are two or more types of remainders of column numbers of pixel columns that include the second pixels divided by the period.
Abstract:
A radiation imaging apparatus, including a plurality of pixels, a plurality of column lines and a processor, the plurality of pixels including first pixels and second pixels configured to generate signals of different values by receiving radiation rays of equal irradiation rates, and the plurality of pixels being arrayed such that their numbers are different between a first column and a second column of the plurality of columns, wherein the processor, after radiation irradiation is started, obtains a first signal of the first column and a second signal of the second column while maintaining each pixel to an OFF state and performs AEC based on the first and second signals.