Abstract:
Disclosed are a power control method and device for D2D transmission. The method includes determining an upper limit value of interference power corresponding to a terminal. The upper limit value of the interference power is the maximum interference value which is allowed by a base station and generated by D2D transmission to cellular transmission. The base station sending the upper limit value of the interference power to the terminal the terminal determines the upper limit value of D2D transmission power by using the upper limit value of the interference power. The terminal determines the upper limit value of the D2D transmission power, and determines the D2D transmission power, the D2D transmission power of the terminal device can be controlled, transmitting power of the D2D transmission is controlled to make the interference generated by same to the cellular transmission to a controlled range, and the interference of a D2D signal to a cellular signal is controlled.
Abstract:
Disclosed are a channel status information (CSI) feedback and control method and device. The method comprises: a terminal receives trigger signaling sent by a base station, the trigger signaling being used for instructing the terminal to report CSI obtained within a specified measurement window; and the terminal reports the CSI that is measured by the terminal within the specified measurement window to the base station. Because a terminal reports only CSI that is measured by the terminal within a specified measurement window, the frequency of feeding back CSI by the terminal is reduced, and CSI feedback overheads are also reduced.
Abstract:
The embodiments of the present disclosure provide a method and a device for constraining a codebook subset. The method includes steps of: determining codebook subset constraint parameters for all or parts of matrix sets for constructing a codebook respectively, each codebook subset constraint parameter indicating an available matrix in a corresponding matrix set; and transmitting the determined codebook subset constraint parameters to a UE. The number of the matrices in each matrix set for constructing the codebook is far less than the number of precoding matrices in the codebook.
Abstract:
Disclosed are a channel state information feedback and acquisition method and device. The application comprises: acquiring, by a terminal, a first-dimension downlink reference signal resource, S second-dimension downlink reference signal resources and a first corresponding relationship of the above configured by a network device; measuring, by the terminal and according to the first-dimension downlink reference signal resource, a first-dimension downlink reference signal, and selecting, by the terminal and according to the measured first-dimension PMI and the first corresponding relationship, a resource for measuring a second-dimension downlink reference signal, measuring, according to the resource, the second-dimension downlink reference signal, and feeding back channel state information, wherein the second-dimension reference signal is transmitted after forming a first-dimension beamforming weight. The present application enables acquisition of channel state information between a network device and a terminal, and adjustment of the first-dimension beamforming weight for forming the second-dimension reference signal according to the PMI fed back by the first-dimension.
Abstract:
Disclosed are a D2D data transmission method and device. The method comprises: determining, by a D2D data sending end, a state of each sending opportunity in a sending window in the same manner as a D2D data receiving end, wherein the sending window is uniformly divided into a plurality of sending opportunities, and the state of each sending opportunity comprises a data sending state and a silent state; and sending D2D data to the D2D data receiving end in the sending opportunity of each data sending state in the sending window. By means of the technical solution provided in the embodiments of the present application, a D2D data sending end sends data on different resources (sending opportunities) or becomes silent, so that different D2D data sending ends are staggered on the resources, thereby alleviating the influence of “near-far” effects.
Abstract:
The present invention provides a method and apparatus for processing uplink control information (UCI) and a method for transmitting the UCI based on a multiple input multiple output system, which processing method comprises: repeating ACK/NACK source bits and/or rank indicator (RI) source bits in the uplink control information to form M groups, with each group corresponding to a code word (S302), wherein M is the total number of code words; carrying out channel encoding on the ACK/NACK source bits and/or RI source bits of each code word to obtain QACK*Li output bits (S304), wherein QACK is the channel encoding output bits corresponding to each layer in a certain code word, L is the total number of layers, and the layer number corresponding to the i-th code word is Li; and multiplexing and interleaving the output bits and the data bits of the corresponding code word (S306). The present invention solves the problems of transmission and channel encoding of the ACK/NACK and/or RI in the multiple input multiple output (MIMO) system, and at the same time takes into account high load situations and backward compatibility.
Abstract:
A method and a device for determining a CSI-RS transmission resource are provided. The method includes: acquiring, by a UE, uplink/downlink subframe configuration information for determining a position of a CSI-RS resource; determining, by the UE, a type of a subframe within which the CSI-RS is to be transmitted in accordance with the uplink/downlink subframe configuration information; and determining, by the UE, the position of the CSI-RS resource within the subframe within which the CSI-RS is to be transmitted in accordance with the determined type of the subframe.
Abstract:
A precoding matrix determination method and a precoding matrix determination device are provided. The precoding matrix determination method includes: dividing each of the groups of vertical-dimension beams into a plurality of subgroups of vertical-dimension beams, and dividing each of the groups of horizontal-dimension beams into a plurality of subgroups of horizontal-dimension beams; determining a first stage codebook in accordance with a Kronecker product of each subgroup of vertical-dimension beams acquired by dividing each of the groups of vertical-dimension beams and each subgroup of horizontal-dimension beams acquired by dividing each of the groups of horizontal-dimension beams; and selecting a plurality of columns of beams from the determined first stage codebook using a second stage codebook, and performing phase adjustment to determine a precoding matrix.
Abstract:
Methods and apparatuses for transmitting coding indication information and determining a precoding matrix, for use in resolving the problem that the resolution of code words in a codebook generated by using a combination of a beam vector subgroup and column selection cannot be flexibly adjusted. The method comprises: determining first precoding indication information and second precoding indication information, the first precoding indication information corresponding to a first-stage precoding matrix, the second precoding indication information corresponding to a direction weighting vector and a phase adjustment factor, the direction weighting vector being used for performing interpolation processing on parts representing angles corresponding to beam vectors in the all beam vectors in each polarization direction in the first-stage precoding matrix, the phase adjusting factor being used for performing phase adjustment on different polarization directions of the first-stage precoding matrix, and the first-stage precoding matrix, the direction weighting vector, and the phase adjustment factor being used for generating a precoding matrix. The resolution of a precoding matrix is flexibly adjusted by using a direction weighting vector.
Abstract:
The present disclosure provides a cell measurement method and a terminal. The cell measurement method includes steps of: measuring a pilot signal from a to-be-measured cell, so as to acquire an channel estimation of N pilot signal transmission ports of the to-be-measured cell, N≧1; determining an equivalent received power corresponding to each precoding matrix in accordance with each precoding matrix in a set of precoding matrices and the channel estimation of the N pilot signal transmission ports of the to-be-measured cell; and determining an equivalent received power of the to-be-measured cell in accordance with the equivalent received power corresponding to each precoding matrix.