Abstract:
Systems, methods, and devices are disclosed for providing a quality of service between nodes. A service provider can receive, from a first node of a customer network to an ingress node of a service provider network, packets bound for a second node on the customer network that is remote from the first node. The packets are mapped to a network segment according to a traffic type based on an identifier associated with the packets that identifies the traffic type of the packets. The packets are sent via their mapped network segment to an egress node with connectivity to the second node of the customer network according to a quality of service associated with the traffic type identified by the identifier.
Abstract:
Various implementations disclosed herein enable identifying anomalies in a network. For example, in various implementations, a method of identifying anomalies in a network is performed by a network node. In various implementations, the network node includes one or more processors, and a non-transitory memory. In various implementations, the method includes generating a characteristic indicator that characterizes a device type based on communications associated with a first device of the device type. In various implementations, the method includes determining, based on communications associated with the first device, a performance indicator that indicates a performance of the first device. In various implementations, the method includes synthesizing an anomaly indicator as a function of the performance indicator in relation to the characteristic indicator.
Abstract:
An example method is provided in one example embodiment and may include receiving, at a packet data network gateway (PGW), a packet associated with an Internet Protocol (IP) flow of a user equipment (UE); identifying a routing rule associated with the IP flow, wherein the routing rule comprises routing access information that identifies whether the IP flow can be routed across a plurality of access networks using weighted link aggregation; and selecting a particular access network to facilitate communications for the IP flow of the UE based on the routing rule. In some cases, the selecting can include assigning the IP flow of the UE to a bearer established for the UE for the particular access network.
Abstract:
An example method is provided in one example embodiment and may include determining a presence of user equipment (UE) in relation to small cell radio(s) of a small cell network based on information obtained through the small cell network and one or more parallel networks; and adjusting transmit power for the small cell radio(s) based on the presence of UE in relation to the small cell radio(s). Another example method can include determining that a UE in cell paging channel mode has changed its selected macro cell radio; determining that the UE is allowed service on a small cell radio located in a vicinity of a macro cell coverage area of a selected macro cell radio; and adjusting a transmit power of the small cell radio based on a presence of the UE in a surrounding macro cell coverage area of the small cell radio.
Abstract:
An example method is provided in one example embodiment and may include requesting, by a user equipment (UE), a profile associated with a subscriber that provides information to facilitate automatic association of the UE with one or more access points of a wireless network, wherein the requesting includes requesting the profile using a Generic Advertisement Service (GAS) Initial Request frame; and sending the profile to the UE using a GAS Initial Response frame. The method can include configuring a Vendor Specific Information Element (VSIE) within an Advertisement Protocol Identifier for the GAS Initial Request frame and configuring the VSIE to indicate an Access Network Query Protocol (ANQP) query for the profile. The method can also include configuring another VSIE within an Advertisement Protocol Identifier for the GAS Initial Response frame and configuring the VSIE to indicate an ANQP query response including the profile.
Abstract:
An example method is provided in one example embodiment and may include subscribing to a key distribution service by a plurality of Wi-Fi access points belonging to a same mobility domain; receiving a request from a user equipment to connect to a first Wi-Fi access point of the plurality of Wi-Fi access points belonging to the same mobility domain; determining one or more second Wi-Fi access points of the plurality of Wi-Fi access points belonging to the same mobility domain that neighbor the first Wi-Fi access points; and distributing keying parameters to each of the one or more second Wi-Fi access points. The keying parameters can be associated with 802.11r pairwise master key (PMK) keying parameters.
Abstract:
In one example, an apparatus is provided that includes a processor configured to receive, in a first wireless network, an identifier of a base station in a second wireless network, and to determine an identity of a first device in the second wireless network. The apparatus is configured to transmit the identifier of the base station to the second wireless network.
Abstract:
An example method is provided in one example embodiment and includes receiving a request to relocate a user equipment (UE) from a source macro radio to an ambiguous small cell access point (AP), wherein the request includes a target cell identity (ID) encoded with a source macro cell identifier for the source macro radio and a target sub-carrier identifier for the ambiguous small cell AP; determining potential target small cell APs for relocation of the first UE using the using the first target cell ID, wherein each of the potential target small cell APs are within a coverage area of the source macro radio and operate using the target sub-carrier identifier; and preparing, for each of the potential target small cell APs, a common channel to receive relocation of the first UE. The first UE can relocate to a particular target small cell access point using the common channel.
Abstract:
An example method is provided in one example embodiment and may include determining a presence of user equipment (UE) in relation to small cell radio(s) of a small cell network based on information obtained through the small cell network and one or more parallel networks; and adjusting transmit power for the small cell radio(s) based on the presence of UE in relation to the small cell radio(s). Another example method can include determining that a UE in cell paging channel mode has changed its selected macro cell radio; determining that the UE is allowed service on a small cell radio located in a vicinity of a macro cell coverage area of a selected macro cell radio; and adjusting a transmit power of the small cell radio based on a presence of the UE in a surrounding macro cell coverage area of the small cell radio.
Abstract:
An example method is provided in one example embodiment and includes receiving a first communication from a user equipment (UE) for a subscriber associated with the first UE to a small cell network, wherein a plurality core networks (CNs) share resources for the small cell network; selecting a first CN from the plurality of CNs to provide services to the first subscriber via the small cell network based, at least in part, on a first Mobile Country Code (MCC) and a first Mobile Network Code (MNC) for the first subscriber; and storing, in at least one memory element, at least one association of the MCC and the MNC to the CN for use in subsequent requests from other UEs for subscribers to attach to the small cell network.