Abstract:
A system for performing continuous transaction log backups with minimal resource usage of the client computing devices that are processing the transactions is disclosed. The system detects at least one input/output (I/O) activity at a client computing device. The I/O activity can be associated with at least one database operation performed via the client computing device. The system then executes one or more native commands to backup transactions log data associated with the detected I/O activity to a virtualized location. Backing-up the transactions log data comprises dynamically identifying a mount path location corresponding to the virtualized location, and transferring the transactions log data to the dynamically identified mount path using the one or more native commands. The system can then perform data processing operations (for example, data chunking and deduplicating) on the transactions log data after it is received at the dynamically identified mount path location.
Abstract:
Virtual machine (VM) proliferation may be reduced by determining the availability of existing VMs to perform a task. Tasks may be assigned to existing VMs instead of creating a new VM to perform the task. Furthermore, a coordinator may determine a grouping of VMs or VM hosts based on one or more factors associated with the VMs or the VM hosts, such as VM type or geographical location of the VM hosts. The coordinator may also assign one or more Virtual Server Agents (VSAs) to facilitate managing the group of VM hosts. In some embodiments, the coordinators may facilitate load balancing of VSAs during operation, such as during a backup operation, a restore operation, or any other operation between a primary storage system and a secondary storage system.
Abstract:
An improved content indexing (CI) system is disclosed herein. For example, the improved CI system may include a distributed architecture of client computing devices, media agents, a single backup and CI database, and a pool of servers. After a file backup occurs, the backup and CI database may include file metadata indices and other information associated with backed up files. Servers in the pool of servers may, in parallel, query the backup and CI database for a list of files assigned to the respective server that have not been content indexed. The servers may then request a media agent to restore the assigned files from secondary storage and provide the restored files to the servers. The servers may then content index the received restored files. Once the content indexing is complete, the servers can send the content index information to the backup and CI database for storage.
Abstract:
Embodiments disclosed herein include systems and processes for replicating one or more user computing systems of an information management system at an external resource system to create a backup or fallback of the user computing systems. Replicating the user computing systems may include replicating data as well as the applications, operating systems and configuration of the user computing systems. This replicated or fallback user computing system may be implemented on a virtual machine at the external resource system. Thus, if a user computing system becomes inaccessible, a new user computing system can be generated based on the backup copy of the user computing system at the external resource system. Further, in some embodiments, the copy of the user computing system may be interacted with at the external resource system. Thus, certain embodiments disclosed herein can be used to transition an information management system to an external resource system.
Abstract:
An improved content indexing system is disclosed herein that content indexing system combines the functionality of the backup metadata database and the content index database into a single backup and content index database to avoid the need to perform synchronization operations. By using a single backup and content index database, the content indexing system also reduces the computing performance costs that would be associated with the synchronization operations as the amount of indexed content increases, thereby solving scalability issues.
Abstract:
Systems and methods for performing file-level restore operations for block-level data volumes are described. In some embodiments, the systems and methods restore data from a block-level data volume contained in secondary storage by receiving a request to restore one or more files from the block-level data volume, mounting a virtual disk to the block-level data volume, accessing one or more mount paths established by the virtual disk between the data agent and the block-level data volume, and browsing data from one or more files within the block-level data volume via the established one or more mount paths provided by the virtual disk.
Abstract:
Certain embodiments described herein relate to an improved selective data backup system. In some embodiments, one or more components in an information management system can determine that a portion of the primary data scheduled for backup was previously backed up or is scheduled to be backed up as part of another backup operation. For example, a data agent performing a cluster-level backup operation for an entire cluster of storage servers may check whether any part of the primary data was previously backed up by a prior server-level backup operation for one of the storage servers in the cluster. If so, the data agent may skip, in the cluster-level backup operation, any portion of the primary data stored in the storage server previously backed up as part of the prior server-level backup operation.
Abstract:
Systems and methods for performing file-level restore operations for block-level data volumes are described. In some embodiments, the systems and methods restore data from a block-level data volume contained in secondary storage by receiving a request to restore one or more files from the block-level data volume, mounting a virtual disk to the block-level data volume, accessing one or more mount paths established by the virtual disk between the data agent and the block-level data volume, and browsing data from one or more files within the block-level data volume via the established one or more mount paths provided by the virtual disk.
Abstract:
Virtual machine (VM) proliferation may be reduced through the use of Virtual Server Agents (VSAs) assigned to a group of VM hosts that may determine the availability of a VM to perform a task. Tasks may be assigned to existing VMs instead of creating a new VM to perform the task. Furthermore, a VSA coordinator may determine a grouping of VMs or VM hosts based on one or more factors associated with the VMs or the VM hosts, such as VM type or geographical location of the VM hosts. The VSA coordinator may also assign one or more VSAs to facilitate managing the group of VM hosts. In some embodiments, the VSA coordinators may facilitate load balancing of VSAs during operation, such as during a backup operation, a restore operation, or any other operation between a primary storage system and a secondary storage system.
Abstract:
Software, firmware, and systems are described herein that migrate functionality of a source physical computing device to a destination virtual machine. A non-production copy of data associated with a source physical computing device is created. A configuration of the source physical computing device is determined. A configuration for a destination virtual machine is determined based at least in part on the configuration of the source physical computing device. The destination virtual machine is provided access to data and metadata associated with the source physical computing device using the non-production copy of data associated with the source physical computing device.