Abstract:
A honeycomb ceramic substrate, a method of making thereof, and a honeycomb extrusion die configured to extrude a honeycomb ceramic substrate from a batch of ceramic or ceramic-forming material is provided. The substrate may include a lattice of intersecting walls defining a honeycomb network of flow channels extending between an inlet end and an outlet end of the honeycomb substrate. Each flow channel may be defined by a plurality of channel walls of the intersecting walls with at least two of the plurality of channel walls including concave inner surfaces facing a center of the corresponding flow channel from central portions of the concave inner surfaces to concave corner portions facing the center of the corresponding flow channel.
Abstract:
A honeycomb extrusion die body (401) including inlet (414) and exit (402) faces, and a plurality of pins (406) on the exit face (402) defining a matrix of intersecting wide slots (425) and narrow slots (427). The wide slots (425) have an exit width (W1) greater than an exit width (W2) of the narrow slots (427). The die body (401) further includes feedholes (422) at the inlet face (414) and intersecting with inlet portions (416) to the wide slots (425) and/or the narrow slots (427). Some of the pins (406) defining the wide slots (425) include a first surface indentation feature (430) that is (i) located between the inlet portion (416) and the wide slot exit and (ii) spaced away from the wide slot exit. Some of the pins (406) defining the narrow slots (427) include a second surface indentation feature (434) that is (i) located between the inlet portion and the narrow slot exit and (ii) spaced away from the narrow slot exit.
Abstract:
A honeycomb extrusion die (120) includes a die body (342) including an inlet face (315) and an outlet face (341). A plurality of pins (330) extend from the die body (342), wherein the pins (330) are arranged to define primary (312P) and secondary slots (312S). Primary slots (312P) include primary slot inlets (320P) and primary slot outlets (3120) and the secondary slots (312S) include secondary slot inlets (312SI) and secondary slot outlets (312SO). Feedholes (317) extend within the die body (342), the feedholes (317) including feedhole outlets (319), wherein the feedhole outlets (319) intersect only with the primary slot inlets (320P). First surface indentation features (345) extend into side surfaces (332) of the plurality of pins (330) defining the primary slots (312P). The first surface indentation features (345) are spaced from the primary slot outlets (3120). The secondary slots (312S) are devoid of surface indentation features. Other die bodies, extruders, and methods are disclosed.
Abstract:
An extrusion die (100) for a honeycomb body, the die (100) including: an input surface (102); an opposing output surface (104); feed holes (108) extending from the input surface (102) toward the output surface (104); discharge slots (106) having a slot width (SW) and a slot length (SL), and extending from the output surface (104) toward the input surface (102); and a plenum (130) fluidly connecting the feed holes (108) and the discharge slots (106). The plenum (130) may include chambers (132) connected to the feed holes (108) and including tapered outlets (134) connected to the discharge slots (106). The plenum (133) may include first chambers (132A) connected to the feed holes (108) and including first tapered outlets (134A), and second chambers (132B) connected to the first outlets and including second tapered outlets (134B) connected to the discharge slots (106).
Abstract:
A honeycomb extrusion die (120) includes a die body (302) including an inlet face (306) and an exit face. The die body (302) has slot inlets (309) and a plurality of pins (320, 500) disposed between the slot inlets (309) and the exit face. The plurality of pins (320, 500) include side surfaces (322, 500B) configured to define a matrix of intersecting slots (324), wherein the matrix of intersecting slots (324) has slot exit (509) widths at the exit face. Divots (526) extend into a plurality of the side surfaces (322, 500B) between the slot inlets (309) and the exit face. Each individual divot (526) has a divot san depth (D55) extending into a side surface (500A, 500B, 502A, 502B) of the side surfaces (322, 500B). A ratio between a slot exit width (W53) W53 of an individual slot (324) and the divot depth (D55) of an individual divot (526) extending into a side surface (500A, 500B, 502A, 502B) of the individual slot (324) is greater than 1.2. Methods of forming honeycomb bodies with honeycomb structures are provided, as are other aspects.
Abstract:
A honeycomb extrusion die comprising at least some slots (308) each with a divot (312) spaced toward a discharge surface (324) from a feedhole-slot intersection (332) and a wide portion at the discharge surface extending into the die body (358) to the divot (312) to strengthen a peripheral region of a honeycomb extrudate in a reinforcement region, and a bulk nominal section corresponding to a bulk region of the honeycomb body.
Abstract:
A honeycomb extrusion die comprising at least some slots (308) each with a divot (312) spaced toward a discharge surface (324) from a feedhole-slot intersection (332) and a wide portion at the discharge surface extending into the die body (358) to the divot (312) to strengthen a peripheral region of a honeycomb extrudate in a reinforcement region, and a bulk nominal section corresponding to a bulk region of the honeycomb body.
Abstract:
A method to form a laminar integral skin of a honeycomb structure is provided. The method includes extruding a ceramic precursor batch through a die with feedholes in entry side and slots in exit face of the die to form the honeycomb structure. In a region on the periphery of the die configured to form the cell matrix, a series of concentric slots around the matrix in the exit face of the die are configured to feed skin onto the matrix. Ring sections between concentric slots are angled away from the center and a mask is disposed on top of the periphery producing a channel for extruded skin to meet and bond to extruded matrix. Optionally, slots in the skin-forming ring sections enhance knitting between laminar skin layers. The die and honeycomb body having uniform integral skin are also provided.
Abstract:
A honeycomb ceramic substrate, a method of making thereof, and a honeycomb extrusion die configured to extrude a honeycomb ceramic substrate from a batch of ceramic or ceramic-forming material is provided. The substrate may include a lattice of intersecting walls defining a honeycomb network of flow channels extending between an inlet end and an outlet end of the honeycomb substrate. Each flow channel may be defined by a plurality of channel walls of the intersecting walls with at least two of the plurality of channel walls including concave inner surfaces facing a center of the corresponding flow channel from central portions of the concave inner surfaces to concave corner portions facing the center of the corresponding flow channel.
Abstract:
A honeycomb ceramic substrate, a method of making thereof, and a honeycomb extrusion die configured to extrude a honeycomb ceramic substrate from a batch of ceramic or ceramic-forming material is provided. The substrate may include a lattice of intersecting walls defining a honeycomb network of flow channels extending between an inlet end and an outlet end of the honeycomb substrate. Each flow channel may be defined by a plurality of channel walls of the intersecting walls with at least two of the plurality of channel walls including concave inner surfaces facing a center of the corresponding flow channel from central portions of the concave inner surfaces to concave corner portions facing the center of the corresponding flow channel.