Abstract:
Various example embodiments relate to rotating coalescers. One embodiment includes a housing comprising a first housing section having a blowby gas inlet structured to receive crankcase blowby gases from a crankcase. The housing further comprises an oil outlet. The rotating coalescer includes an endcap and filter media. The filter media is arranged in a cylindrical shape and is coupled to and positioned between the first housing section and endcap. The filter media is structured to filter the crankcase blowby gases passing through the filter media by coalescing and separating oils and aerosols contained in the crankcase blowby gases. The rotating coalescer includes a hollow shaft extending through the housing and positioned radially inside of the filter media. The hollow shaft forms a blowby gas outlet structured to route filtered crankcase blowby gases out of the housing. The rotating coalescer further includes a drive mechanism operatively coupled to the hollow shaft.
Abstract:
Various example embodiments relate to rotating coalescers. One embodiment includes a housing comprising a first housing section having a blowby gas inlet structured to receive crankcase blowby gases from a crankcase. The housing further comprises an oil outlet. The rotating coalescer includes an endcap and filter media. The filter media is arranged in a cylindrical shape and is coupled to and positioned between the first housing section and endcap. The filter media is structured to filter the crankcase blowby gases passing through the filter media by coalescing and separating oils and aerosols contained in the crankcase blowby gases. The rotating coalescer includes a hollow shaft extending through the housing and positioned radially inside of the filter media. The hollow shall forms a blowby gas outlet structured to route filtered crankcase blowby gases out of the housing. The rotating coalescer further includes a drive mechanism operatively coupled to the hollow shaft.
Abstract:
Various example embodiments relate to rotating coalescers. One embodiment includes a housing comprising a first housing section having a blowby gas inlet structured to receive crankcase blowby gases from a crankcase. The housing further comprises an oil outlet. The rotating coalescer includes an endcap and filter media. The filter media is arranged in a cylindrical shape and is coupled to and positioned between the crankcase blowby gases passing through the filter media by coalescing and separating oils and aerosols contained in the crankcase blowby gases. The rotating coalescer includes a hollow shaft extending through the housing and positioned radially inside of the filter media. The hollow shaft forms a blowby gas outlet structured to route filtered crankcase blowby gases out of the housing. The rotating coalescer further includes a drive mechanism operatively coupled to the hollow shaft.
Abstract:
A rotating separator has a housing preventing separated liquid carryover. A plenum between the annular rotating separating filter element and the housing sidewall has one or more flow path separating guides minimizing the flow of separated liquid to the outlet. The flow path guides may include one or more fins and/or swirl flow dampers and/or a configured surface.
Abstract:
A gas-liquid separator has a housing having an inlet for receiving a gas-liquid stream and an outlet for discharging a gas stream. A nozzle structure in the housing has a plurality of nozzles that receive the gas-liquid stream and accelerate the gas-liquid stream therethrough to create a plurality of gas-liquid jets. An inertial collector in the housing causes a sharp directional change of the gas-liquid jets, causing separation of liquid particles from the gas-liquid stream to produce the gas stream. The inertial collector has a porous collection substrate. According to the present disclosure, at least one of the following three conditions is met: (a) the porous collection substrate comprises fibers of small diameter and has low packing density; (b) the porous collection substrate comprises oleophobic fibers; and (c) the nozzle structure and the inertial collector are configured to allow for full expansion of the plurality of gas-liquid jets.
Abstract:
An inertial gas-liquid impactor separator includes flow director guidance structure directing and guiding flow through the housing from the inlet to the outlet along a flow path from upstream to downstream. The flow director guidance structure may include a flow controller controlling and directing flow.
Abstract:
A gas-liquid separator has a housing having an inlet for receiving a gas-liquid stream and an outlet for discharging a gas stream. A nozzle structure in the housing has a plurality of nozzles that receive the gas-liquid stream and accelerate the gas-liquid stream therethrough to create a plurality of gas-liquid jets. An inertial collector in the housing causes a sharp directional change of the gas-liquid jets, causing separation of liquid particles from the gas-liquid stream to produce the gas stream. The inertial collector has a porous collection substrate. According to the present disclosure, at least one of the following three conditions is met: (a) the porous collection substrate comprises fibers of small diameter and has low packing density: (b) the porous collection substrate comprises oleophobic fibers; and (c) the nozzle structure and the inertial collector are configured to allow for full expansion of the plurality of gas-liquid jets.
Abstract:
Various embodiments provide for a filter assembly. The filter assembly includes a filter housing, a filter element, and a cover. The filter housing has a first housing end and a second housing end that define an internal cavity. The filter housing has a housing seal member formed on the second housing end. The filter element is disposed in the internal cavity. The filter element includes a filter media, an endplate, and a filter seal member. The filter media has a first media end and a second media end. The endplate is disposed at the first media end. The filter seal member is formed on the endplate. The filter seal member includes an inner seal portion and an outer seal portion. The filter seal member is configured to engage the housing seal member. The cover secures the engagement of the housing seal member and the filter seal member.
Abstract:
Various embodiments provide for a filter assembly. The filter assembly includes a filter housing, a filter element, and a cover. The cover includes a first cover end and a second cover end disposed axially away from the first cover end. A second coupling member is adjacent to the second cover end. The second coupling member is configured to engage a first coupling member to couple the cover and the filter housing. A biasing member is coupled to the first cover end. An interface plate is configured to press against a first endplate of the filter element to secure the engagement of a first engagement portion of a filter seal member of the filter element and a second engagement portion of a housing seal member of the filter housing.
Abstract:
An air-liquid separation assembly for separating air and liquid from an air-liquid mixture comprises a housing through which fluid flows, a main separator positioned within the housing, and a sub-separator. The sub-separator is positioned within the housing before or after the main separator and defines a plurality of slots. Each of the plurality of slots is positioned either between adjacent baffles of the sub-separator or between a baffle of the sub-separator and a portion of the housing. The plurality of slots are positioned next to each other in a direction substantially perpendicular to the direction of fluid flow through the housing. The plurality of slots comprises a first subset of slots and a second subset of slots. The second subset of slots extends at a different angle than the first subset of slots such that fluid flows through the first subset of slots and the second subset of slots at different angles.