Abstract:
A rotating separator has a housing preventing separated liquid carryover. A plenum between the annular rotating separating filter element and the housing sidewall has one or more flow path separating guides minimizing the flow of separated liquid to the outlet. The flow path guides may include one or more fins and/or swirl flow dampers and/or a configured surface.
Abstract:
A gas-liquid separator comprises a housing having an inlet for receiving a gas-liquid stream and an outlet for discharging a gas stream. An impactor nozzle structure is supported by the housing and situated downstream of the inlet. The impactor nozzle structure receives the gas-liquid stream and accelerates the gas-liquid stream through an orifice that extends through the impactor nozzle structure. An impaction surface is supported by the housing and situated downstream of the orifice. The impaction surface receives the accelerated gas-liquid stream and causes separation of liquid particles from the gas-liquid stream so as to produce the gas stream, and a baffle situated downstream of the impaction surface modifies a flow of the gas stream so as to reduce carryover of liquid particles in the gas stream. A shroud for an inertial impactor gas-liquid separator is disclosed. A method for separating liquid particles from a gas-liquid stream is disclosed.
Abstract:
An internal combustion engine crankcase ventilation rotating coalescer includes an annual rotating coalescing filter element, an inlet port supplying blow by gas from the crankcase to the hollow interior of the annular rotating coalescing filter element, and an outlet port delivering clean separated, air from the exterior of the rotating element. The direction of flow by gas inside-out, radially, outwardly from the hollow interior to the exterior.
Abstract:
The combination of a gas-pressure-driven pump jet nozzle or alternatively Coanda effect nozzle with an impactor nozzle(s) in an air-oil separator for separating oil from blow-by gasses from a crankcase of an internal combustion engine, or for separating liquid aerosol from gas, in general. Such combination enhances impaction efficiency and enables operation at higher pressure differentials (or pressure drop) (“dP”) without causing excessive backpressure in the air-oil separator.
Abstract:
A pleated filter media comprises a plurality of pleats comprised of pleat segments extending in an axial direction between first and second axial ends and extending in a transverse direction that is perpendicular to the axial direction between first and second sets of pleat tips at least partially defined by first and second sets of bend lines. Axial flow channels are defined between the pleat segments in the lateral direction and the plurality of pleats has a width in the transverse direction that varies along the axial direction.
Abstract:
The combination of a gas-pressure-driven pump jet nozzle or alternatively Coanda effect nozzle with an impactor nozzle(s) in an air-oil separator for separating oil from blow-by gasses from a crankcase of an internal combustion engine, or for separating liquid aerosol from gas, in general. Such combination enhances impaction efficiency and enables operation at higher pressure differentials (or pressure drop) (“dP”) without causing excessive backpressure in the air-oil separator.
Abstract:
A gas-liquid separator comprises a housing having an inlet for receiving a gas-liquid stream and an outlet for discharging a gas stream. An impactor nozzle structure is supported by the housing and situated downstream of the inlet. The impactor nozzle structure receives the gas-liquid stream and accelerates the gas-liquid stream through an orifice that extends through the impactor nozzle structure. An impaction surface is supported by the housing and situated downstream of the orifice. The impaction surface receives the accelerated gas-liquid stream and causes separation of liquid particles from the gas-liquid stream so as to produce the gas stream, and a baffle situated downstream of the impaction surface modifies a flow of the gas stream so as to reduce carryover of liquid particles in the gas stream. A shroud tier an inertial impactor gas-liquid separator is disclosed. A method for separating liquid particles from a gas-liquid stream is disclosed.
Abstract:
A pleated filter media comprises a plurality of pleats comprised of pleat segments extending in an axial direction between first and second axial ends and extending in a transverse direction that is perpendicular to the axial direction between first and second sets of pleat tips at least partially defined by first and second sets of bend lines. Axial flow channels are defined between the pleat segments in the lateral direction and the plurality of pleats has a width in the transverse direction that varies along the axial direction.
Abstract:
A rotating separator has a housing preventing separated liquid carryover. A plenum between the annular rotating separating filter element and the housing sidewall has one or more flow path separating guides minimizing the flow of separated liquid to the outlet. The flow path guides may include one or more fins and/or swirl flow dampers and/or a configured surface.
Abstract:
A rotating separator has a housing preventing separated liquid carryover. A plenum between the annular rotating separating filter element and the housing sidewall has one or more flow path separating guides minimizing the flow of separated liquid to the outlet. The flow path guides may include one or more fins and/or swirl flow dampers and/or a configured surface.