Abstract:
Filter media and media packs that provide robust performance in high-speed rotating coalescer (HSRC) elements for crankcase ventilation systems are described. The filter media is HSRC filter media. As such, the filter media has a higher resistance to compressibility than traditional coalescer filter media, such as filter media used in low-speed rotating coalescer arrangements or stationary coalescer arrangements.
Abstract:
A rotating separator has a housing preventing separated liquid carryover. A plenum between the annular rotating separating filter element and the housing sidewall has one or more flow path separating guides minimizing the flow of separated liquid to the outlet. The flow path guides may include one or more fins and/or swirl flow dampers and/or a configured surface.
Abstract:
A rotating separator has a housing preventing separated liquid carryover. A plenum between the annular rotating separating filter element and the housing sidewall has one or more flow path separating guides minimizing the flow of separated liquid to the outlet. The flow path guides may include one or more fins and/or swirl flow dampers and/or a configured surface.
Abstract:
A rotating separator has a housing preventing separated liquid carryover. A plenum between the annular rotating separating filter element and the housing sidewall has one or more flow path separating guides minimizing the flow of separated liquid to the outlet. The flow path guides may include one or more fins and/or swirl flow dampers and/or a configured surface.
Abstract:
A method and system is provided for regenerating and cleaning an air-oil coalescer of a crankcase ventilation system of an internal combustion engine generating blowby gas in a crankcase. The coalescer coalesces oil from the blowby gas. The method and system includes regenerating and cleaning the coalescer by intermittent rotation thereof.
Abstract:
A rotating separator has a housing preventing separated liquid carryover. A plenum between the annular rotating separating filter element and the housing sidewall has one or more flow path separating guides minimizing the flow of separated liquid to the outlet. The flow path guides may include one or more fins and/or swirl flow dampers and/or a configured surface.
Abstract:
An internal combustion engine crankcase ventilation rotating coalescer includes an annual rotating coalescing filter element, an inlet port supplying blow by gas from the crankcase to the hollow interior of the annular rotating coalescing filter element, and an outlet port delivering clean separated, air from the exterior of the rotating element. The direction of flow by gas inside-out, radially, outwardly from the hollow interior to the exterior.
Abstract:
A method and system is provided for regenerating and cleaning an air-oil coalescer of a crankcase ventilation system of an internal combustion engine generating blowby gas in a crankcase. The coalescer coalesces oil from the blowby gas. The method and system includes regenerating and cleaning the coalescer by intermittent rotation thereof.
Abstract:
A filter assembly for separating liquid from a fluid mixture that includes a filter housing with an inner surface, a filter element configured to separate a liquid from a fluid mixture and defining an outer surface, and a porous filter media. The filter element is positioned within the filter housing such that the outer surface of the filter element faces the inner surface of the filter housing. The porous filter media is attached to the inner surface of the filter housing to facilitate drainage of the liquid through the filter housing and prevent liquid carryover after the fluid mixture flows through the filter element.
Abstract:
Filter media and media packs that provide robust performance in high-speed rotating coalescer (HSRC) elements for crankcase ventilation systems are described. The fiber media is HSRC fiber media. As such, the filter media has a higher resistance to compressibility then traditional coalescer filter media, such as fiber media used in low-speed rotating coalescer arrangements or stationary coalescer arrangements.