Abstract:
An internal combustion engine having an exhaust log structure onto which a plurality of turbochargers is connected, each turbocharger having a turbine connected to the exhaust log structure and having an inlet fluidly connectable to a respective one of the plurality of outlet ports, an exhaust valve disposed at a turbine outlet such that the flow of exhaust gas out of the turbine is fluidly blocked, and an actuator associated with the exhaust valve and operating to move the exhaust valve from a closed position to an open position and vice versa. An electronic controller provides a command to the actuator to move the exhaust valve between the open and closed positions and is programmed to selectively open two one or more exhaust valves based on an operating condition of the engine.
Abstract:
A method for estimating a specific gravity of a gaseous fuel is described. The gaseous fuel may power an engine and the engine may include a cylinder, a gas valve configured to supply an intake port of the cylinder with the gaseous fuel, a gas rail configured to deliver the gaseous fuel to the gas valve, and a microprocessor adapted to perform the method. The method may comprise establishing a pressure wave in the gas rail by opening and closing the gas valve, wherein the pressure wave travels at the speed of sound in the gaseous fuel. The method may further comprise determining a frequency of the pressure wave in the gas rail, and estimating the specific gravity of the gaseous fuel based on the frequency of the pressure wave.
Abstract:
The disclosure relates to a system and method for determining the specific gravity of a fuel used in a dual fuel engine. The system includes a fuel rail, at least one sensor, and a processor. The method includes sensing and recording, with the at least one sensor and the at least one memory, a first pressure profile of a first fuel in the fuel rail and a second pressure profile of a second fuel in the fuel rail. The first fuel has a known specific gravity and the second fuel has an unknown specific gravity. The method further includes calculating the second specific gravity of the second fuel, with a processor, based on the first pressure profile, the second pressure profile, and the first specific gravity.
Abstract:
A method for estimating a specific gravity of a gaseous fuel is described. The gaseous fuel may power an engine and the engine may include a cylinder, a gas valve configured to supply an intake port of the cylinder with the gaseous fuel, a gas rail configured to deliver the gaseous fuel to the gas valve, and a microprocessor adapted to perform the method. The method may comprise establishing a pressure wave in the gas rail by opening and closing the gas valve, wherein the pressure wave travels at the speed of sound in the gaseous fuel. The method may further comprise determining a frequency of the pressure wave in the gas rail, and estimating the specific gravity of the gaseous fuel based on the frequency of the pressure wave.
Abstract:
A method for controlling an air-fuel ratio (AFR) in an engine powered by a gaseous fuel having an unknown composition may comprise receiving an assumed gas species composition for the gaseous fuel, and determining an assumed lower heating value (LHV) for the assumed gas species composition. The method may further comprise determining a perceived lower heating value (LHV) for the gaseous fuel based on a perceived gas mass flow and a gas energy flow for the gaseous fuel, and updating the assumed gas species composition until the assumed LHV and the perceived LHV are aligned. The method may further comprise determining a desired AFR and an airflow necessary to provide the desired AFR using the aligned gas species composition and a desired lambda (λ), and adjusting an air system controller of the engine to provide the airflow.
Abstract:
A fuel injection timing management system for a dual fuel engine is configured to determine a first diesel injection timing corresponding to a first mode of operation of the engine system and a second diesel injection timing corresponding to a second mode of operation. Further, determine a direction of change in a mode of operation of the engine system, and selectively perform a change in the diesel injection timing from the first diesel injection timing to the second diesel injection timing at a first rate of transition or a second rate of transition, based on the direction of change in a mode of operation of the engine system.
Abstract:
Controlling intake pressure in an internal combustion engine includes calculating a proportional control term based on a difference between actual and desired intake pressure, determining choke and waste gate position values responsive to the proportional control term, and commanding a change in position of the choke or waste gate responsive to the corresponding position value to adjust actual intake pressure toward desired intake pressure. Related apparatus and control logic is also disclosed.