摘要:
A thermal ink jet printer is disclosed having a printhead with a passageway therein for the circulation of a cooling fluid therethrough. The passageway is parallel and closely adjacent the array of bubble generating heating elements. When the printhead is composed of mated silicon channel and heater plates, the passageway is formed in one embodiment by forming a groove in the heater plate surface opposite the one containing the heating elements and addressing electrodes followed by the mating of a silicon sealing plate having inlet and outlet openings etched therein. Tubes for circulating a cooling fluid, such as ink, are sealingly attached to the inlet and outlet openings. In an alternative embodiment, the groove may be formed in the sealing plate or in both the sealing plate and the printhead heater plate. In another embodiment, the passageway for the cooling fluid is provided by etching a channel in a thick film layer deposited on the heater plate surface opposite the one with the heating elements. The circulated cooling fluid prevents printhead temperature fluctuations during the printing operation.
摘要:
An improved method of fabricating a thermal ink jet printhead of the type produced by the mating of an anisotropically etched silicon substrate containing ink flow directing recesses with a substrate having heating elements and addressing electrodes is disclosed. An etch resistant material on one surface of a (100) silicon substrate is patterned to form at least two sets of vias therein having predetermined sizes, shapes, and predetermined spacing therebetween. The predetermined spacing permits selected complete undercutting by an anisotropic etchant within a predetermined etching time period. The patterned silicon substrate is anisotropically etched for the predetermined time period to form at least two sets of separate recesses, each recess being separated from each other by a wall, the surfaces of the walls being {111} crystal planes of the silicon substrate, whereby certain predetermined separately etched recesses are selectively placed into communication with each other by the selective undercutting while the remainder of the undercut walls provide strengthening reinforcement to the printhead, so that larger printheads may be fabricated which are more robust without relinquishing resolution or reducing tolerances.
摘要:
A continuous stream type ink jet printhead utilizing constant thermal pulses to perturbate the ink streams emitted through a plurality of nozzles to break up the ink streams into droplets at a fixed distance from the nozzles whereat the drops are individually charged by a charging electrode in accordance with digitized data signals. Each printhead has a manifold, a plurality of ink channels communicating at one end with the manifold and terminating at the other end with nozzles, and at least one resistor addressed by a predetermined frequency of current pulses for applying thermal pulses to the ink. In one embodiment, a resistor is positioned in each of the channels adjacent the nozzles and in another embodiment, a single resistor is located in the ink manifold. The resistors are pulsed at low power to generate a perturbation of ink properties such as density, viscosity, or surface tension without producing a phase change in the ink.
摘要:
A method for detecting a defect in an inkjet print head within an inkjet marking device includes marking images on a rotating intermediate substrate according to an image sequence, marking a test image on at least one blank portion of the intermediate substrate, the blank portion resulting from the image sequence, evaluating the test image with a sensor, and determining whether the inkjet print head is defective based on the evaluation.
摘要:
A xerographic print engine employs a photoreceptor with an image receiving surface, a printhead for directing light to the photoreceptor to produce thereon a latent image, and a developer for converting the latent image to a printable image to be transferred from the photoreceptor to a print medium during a relative motion between the photoreceptor and the print medium. The printhead has light emitting diodes disposed in plural rows arranged alongside each other on a substrate which also supports driver circuitry connecting with imaging electronics for activating individual ones of the diodes. An optical element focuses light of the diodes onto a row of the latent image, the focussing being accomplished concurrently for individual ones of the diodes located in a plurality of the rows.
摘要:
An ink jet printer is configured in a hybrid architecture wherein a full width printbar is combined with a partial width color scanning assembly to provide the capability of selectively printing in black only or, alternately, into producing color prints by operating the color scanning assembly exclusively. The cost of the hybrid system, when compared to a full width color system using four full width printbars, is greatly reduced. The partial width scanning assembly is mounted on a carriage which is stepped along a printing swath width, the sum of the incremental scan steps equaling the width of a full width printbar. A dimensional mismatch between the printbar and the scanning printhead in the direction perpendicular to paper motion (width direction) could result in image degradation because of misalignment of color drops to black drops. The mismatch could result in manufacturing errors in either the printhead width and/or the width of the carriage. It is proposed to identify the total mismatch as a distance .DELTA.l prior to print operation and to adjust the incremental steps of carriage scan motion so as to change each incremental step by .DELTA.l divided by the number of steps. Thus, the mismatch is effectively spread over the entire print swath and does not become visually perceptible in the output image.
摘要:
Overlapping chip replaceable subunits for RIS or ROS array bars are disclosed. The subunits include a planar semiconductive substrate having at least one component and supporting circuitry on a surface thereof. The semiconductive substrate has first and second side edges, a front edge and a width equal to a distance between the first and second side edges. The planar semiconductive substrate is mounted on a planar support which can be, for example, a daughterboard/heat sink assembly having at least one electrode having a terminal at one end thereof. The planar support also has first and second side edges, a front edge and a width equal to a distance between the first and second side edges. The width of the support is less than the width of the semiconductive substrate so that the first and second side edges of the planar semiconductive substrate extend outwardly beyond the first and second side edges, respectively, of the support. The structure of the present invention enables extended arrays of subunits to be accurately placed on one surface of a substrate, while permitting individual subunits to be removed from the substrate easily and without damaging adjacent subunits or their electrical connections to the host machine.
摘要:
Modular partial bars include a substrate bar having a length and a plurality of printhead subunits attached to only one side of the substrate bar, each printhead subunit being spaced from an adjacent printhead subunit. These modular partial bars are used as building blocks to form full width staggered array printheads. When the printhead subunits are arranged on each substrate bar so that two substrate bars are capable of forming a full width staggered array printhead, each modular partial bar is referred to as a modular half bar. One modular half bar can be stacked on another modular half bar any number of ways. For example, two half bars can be stacked with their printhead subunit containing sides facing the same direction, away from one another or towards one another. When two half bars are stacked with their printhead subunit containing sides facing in the same direction, an ink manifold for supplying ink to the printhead subunits of the lower half bar can be provided in the substrate of the upper half bar. When half bars are arranged with their printhead subunit containing sides facing each other, a common ink supply manifold can be used to supply ink to all of the printhead subunits in the full width staggered array, thus eliminating the need for two separate ink supply manifolds. By modifying the construction of the channel plates typically used to form the printhead subunits, the need for a separate ink supply manifold can be entirely eliminated.
摘要:
A method of fabricating channel plates for ink jet printheads from a (100) silicon wafer is disclosed. The location of the nozzle-forming channels are accurately located relative to side edges of each channel plate to permit extended arrays of printheads containing these channel plates to be fabricated without discrepancies between the spacing of end nozzles of adjacent subunits. The present invention achieves this result by forming a first set of base etch openings and a second set of base etch openings on a base surface of a (100) silicon wafer. The first set of base etch openings define the locations of side edges of each channel plate. The second set of base etch openings define the locations and dimensions of a plurality of nozzle-defining channels for each channel plate. By aligning the second set of base etch openings with the first set of base etch openings, the channel plates which are formed after etching the silicon wafer have nozzle-defining channels which are precisely aligned with the side edges of each channel plate.
摘要:
A multi-color roofshooter type thermal ink jet printhead includes a common heater substrate having at least two arrays of heating elements and a corresponding number of elongated feed slots, each heater array being located adjacent its corresponding feed slot. A common channel substrate is layered above a heater substrate and includes arrays of nozzles corresponding in number to the arrays of heating elements, each nozzle array communicating with one of the feed slots on the heater substrate. Each nozzle array is isolated from an adjacent nozzle array and each nozzle of each nozzle array is aligned above a respective heating element of a corresponding heater array. Each of the heater arrays is individually addressed and driven by switching circuitry located on the heater substrate adjacent to its corresponding heater array. The switching circuitry can be active driver matrices corresponding in number to the arrays of heating elements. The locations of the driver matrices preferably alternate with locations of the feed slots. With this construction, multi-color printheads can be efficiently arranged on a single wafer, so that silicon real estate is conserved. The switching circuitry can also be used to address an array of heating elements in a mono-color thermal inkjet printhead. In a preferred embodiment, inputs of the switching circuitry extend from sides of the switching circuitry whereby distances between adjacent feed slots are minimized.