Abstract:
Fountain solution latent images are provided on an inking blanket without using laser-induced evaporation systems. Approaches include a rotatable charge retentive surface configured to receive an unfused toned electrostatic pattern of toner particles adhered thereto via electrophotography. The toner includes small diameter polymeric or inorganic particles that may have no color pigment to appear transparent or translucent. Fountain solution is disposed on at least one of the toner, the charge retentive surface and a transfer substrate. The transfer substrate is adjacent the charge retentive surface and forms a nip therebetween, with the transfer substrate sandwiching the unfused toned electrostatic pattern of toner particles and fountain solution against the charge retentive surface at the nip. Fountain solution sandwiched between the surfaces splits as the surfaces separate downstream the nip, leaving a fountain solution latent image remaining on the transfer member surface based on the electrostatic charged pattern on the charge retentive surface.
Abstract:
A thermal head of the disclosure includes a substrate; a heat generating section disposed on the substrate; an electrode disposed on the substrate, the electrode having a connecting portion connected to the heat generating section; and a protective layer which covers the heat generating section and the connecting portion of the electrode, a part of the protective layer which is disposed on the connecting portion having a closed first void therein.
Abstract:
In an image reading apparatus, first and second semiconductor chips are arranged in series on a transparent insulative base. The semiconductor chips are covered by a protective layer and have conductive pads located both side of the series arrangement of the chips. A traveling path in which a document passes is defined on the protective layer between the pads.
Abstract:
A thermal display system is described which comprises an array of semiconductor heater elements bonded to a ceramic substrate by a layer of epoxy of predetermined thickness. The thickness of the epoxy may be controlled by spacer means disposed in the epoxy between the silicon slice and the substrate. The spacer means may be particles of predetermined maximum size dispersed in the epoxy, may be protrusions from the ceramic substrate, or may be protrusions from the silicon slice. Methods are also described for fabricating each of the displays, including methods for controlling the thickness other than by the use of spacers.
Abstract:
Disclosed is a thermal display module having an array of heater elements, thermal drive matrix, character generator, and deposited conductive interconnections therebetween disposed upon an insulating substrate. The heater elements and drive matrix are initially formed as integral portions of a semiconductor wafer, the wafer being mounted to the substrate at one face by way of thickened or plated up contacts on the wafer interconnecting with a conductive pattern on the substrate, the heater elements extending to the opposite face in communication with thermally sensitive record material. Trapezoidal shaped heater elements are provided as a result of a unique sequence of processing steps.
Abstract:
Based on evaporation of fountain solution from a rotating blanket cylinder to create an image that may be inked and printed, a digitally addressable heater array at or just below the blanket surface evaporates deposited fountain solution and forms a fountain solution latent image on the surface. The heater array has controllable heating elements (e.g., field effect transistors, thin film transistors) that provide a transient heat pattern on the surface to evaporate the fountain solution. Heat is generated by current flow in the heating elements, and power developed by the heating circuit is the product of source-drain voltage and current in the channel. Current may be supplied along data lines by an external voltage controlled by digital electronics to provide the desired heat at heating elements addressed by a specific gate line. The heater array may include a current return line that may be a 2-dimensional mesh.
Abstract:
In an image reading apparatus, first and second semiconductor chips are arranged in series on a transparent insulative base. The semiconductor chips are covered by a protective layer and have conductive pads located both side of the series arrangement of the chips. A traveling path in which a document passes is defined on the protective layer between the pads.
Abstract:
Pulse fingers are disposed on a heat-generating material which fingers are pulsed to change the resistance of portions of the heat-generating material. By such change in the resistance of the heat-generating material, electrical current diffusion is prevented and heat diffusion is permitted between the changed resistance portion of the heat-generating material, thereby providing high resolution character printing and so-called "continuous" graphics printing.
Abstract:
Overlapping chip replaceable subunits for RIS or ROS array bars are disclosed. The subunits include a planar semiconductive substrate having at least one component and supporting circuitry on a surface thereof. The semiconductive substrate has first and second side edges, a front edge and a width equal to a distance between the first and second side edges. The planar semiconductive substrate is mounted on a planar support which can be, for example, a daughterboard/heat sink assembly having at least one electrode having a terminal at one end thereof. The planar support also has first and second side edges, a front edge and a width equal to a distance between the first and second side edges. The width of the support is less than the width of the semiconductive substrate so that the first and second side edges of the planar semiconductive substrate extend outwardly beyond the first and second side edges, respectively, of the support. The structure of the present invention enables extended arrays of subunits to be accurately placed on one surface of a substrate, while permitting individual subunits to be removed from the substrate easily and without damaging adjacent subunits or their electrical connections to the host machine.
Abstract:
A temperature regulator is provided in a thermal printer to maintain reliable and consistent printing quality. The temperature regulator is constructed to either remove heat generated during the printing process from the printing area and/or from the printer itself or to supply heat as needed to maintain a constant temperature. The temperature regulator is formed of a heat pipe and a thermoelectric transducer with a common controller.