Abstract:
An embodiment of the present invention provides a method of manufacturing hermetic packaging for devices on a substrate wafer, comprising forming a plurality of adhesive rings on a cap wafer or the substrate wafer, bonding the cap wafer to the substrate wafer with an adhesive layer, forming trenches in the cap wafer and the adhesive rings along outer rim of the adhesive rings, and covering sidewall of the trenches by at least one deposited film to provide a diffusion barrier to moisture or gas.
Abstract:
A system and method for manufacturing micro cavities at the wafer level using a unique, innovative MEMS (MicroElectroMechanical Systems) process, wherein micro cavities are formed, with epoxy bonded single-crystalline silicon membrane as cap and deposited and/or electroplated metal as sidewall, on substrate wafers. The epoxy is also the sacrificial layer. It is totally removed from within the cavity through small etch access holes etched in the silicon cap before the etch access holes are sealed under vacuum. The micro cavities manufactured therein can be used as pressure sensors or for packaging MEMS devices under vacuum or inert environment. In addition, the silicon membrane manufactured therein can be used to manufacture RF switches.
Abstract:
A micro-electro-mechanical device and method of manufacture therefore with a suspended structure formed from mono-crystalline silicon, bonded to a substrate wafer with an organic adhesive layer serving as support and spacer and the rest of the organic adhesive layer serving as a sacrificial layer, which is removed by a dry etch means. Said substrate wafer may contain integrated circuits for sensing and controlling the device.
Abstract:
A micro-electro-mechanical device and method of manufacture therefore with a suspended structure formed from mono-crystalline silicon, bonded to a substrate wafer with an organic adhesive layer serving as support and spacer and the rest of the organic adhesive layer serving as a sacrificial layer, which is removed by a dry etch means. Said substrate wafer may contain integrated circuits for sensing and controlling the device.
Abstract:
A novel process for fabricating a CCD imager arrray (10) having a tin oxide electrode monolayer (18) is disclosed. The process includes a low pressure chemical vapor deposition step using tetramethyltin and oxygen, and an ion implantation step that increased conductivity of the tin oxide electrodes to as high as 700 ohm.sup.-1 cm.sup.-1.
Abstract:
For HgCdTe liquid phase epitaxy (LPE), in situ differential thermal analysis apparatus is used to precisely monitor the liquidus temperature of each HgCdTe melt. The neutral body, e.g. a slug of copper enclosed in a silica ampoule, is placed near the LPE reactor in a furnace. During heating or cooling, differential sensing of a pair of thermocouples (in the melt and in the neutral body) will show an accelerated change at transformation points, since at these points the temperature of the melt will be changed by the energy of the physical change, while that of the neutral body remains subject only to passive heat transfer. Thus, the actual liquidus temperature of each melt can be measured with extreme precision, and isothermal or programmed cooling methods of LPE can be precisely and reliably controlled under production conditions.