Abstract:
In the preferred embodiment of the present invention, narrow bandgap II-VI compound semiconductor HgxCd1-xTe (0.1≦x≦0.5) (HgCdTe) wafers are annealed under Cd supersaturated conditions by exposing the HgCdTe planar or mesa surfaces to a Cd molecular beam in a vacuum deposition system before, during, and/or after anneals performed during individual photodiode fabrication process steps or HgCdTe epitaxial growth steps for eliminating or neutralizing the bulk or interfacial defects.
Abstract translation:在本发明的优选实施方案中,将窄带隙II-VI化合物半导体HgxCd1-xTe(0.1 @ x @ 0.5)(HgCdTe)晶片在Cd过饱和条件下退火,通过将HgCdTe平面或台面表面暴露于Cd分子束 在单个光电二极管制造工艺步骤中执行退火之前,期间和/或之后的真空沉积系统或用于消除或中和本体或界面缺陷的HgCdTe外延生长步骤。
Abstract:
A system and method for manufacturing micro cavity packaging enclosure at the wafer level using MEMS (MicroElectroMechanical Systems) process, wherein micro cavities are formed from epoxy-bonded single-crystalline silicon wafer as its cap, epoxy and deposited metal or insulator as at least part of its sidewall, on substrate wafers.
Abstract:
Channel stops for MIS infrared photodetector devices in Hg.sub.1-x Cd.sub.x Te by lattice damage (454) between and automatically aligned to MIS gates (408). Also, field plates and guard rings are automatically aligned to MIS gates.
Abstract:
An embodiment of the present invention provides a step actuator, comprising a suspended membrane comprising a plurality of movable electrodes connected by plurality of spring hinges to a payload platform; and pillars connecting said membrane to a substrate, said substrate comprising a plurality of fixed electrodes; wherein said movable electrodes of said suspended membrane and said fixed electrodes from said substrate form parallel-plate electrostatic sub-actuators. Another embodiment of the present invention provides controlled operation of the step actuator over its entire range of motion, by avoiding its instability region and both digital and analog operations with enhanced stroke. It comprises a suspended membrane comprising a plurality of fixed electrodes, a plurality of movable electrodes connected by plurality of spring hinges to a medial payload platform. The fixed electrodes comprise insulator stops that keep the movable electrodes from entering the unstable region.
Abstract:
An avalanche photodiode is operated in avalanche mode at a selected reverse bias that achieves high gain and a reduced gain normalized dark current.
Abstract:
This invention relates to mounting integrated circuits (IC) to multi-chip modules (MCM) or substrates. More specifically, it provides a method of mounting a semiconductor die such as a thin slice of Mercury Cadmium Telluride (MCT) to a silicon semiconductor substrate, a read-out integrated circuit (ROIC), using a thermoplastic to reduce stress on the MCT caused by mismatched Coefficients of Thermal Expansion (CTE). This process provides for an array of infrared photodetectors on a material such as MCT to be mounted to a read-out integrated circuit (ROIC) using the Vertical Integrated Photodiode (VIP) approach to FPAs, while allowing double sided interdiffusion of CdTe for surface passivation to reduce dark currents and improve performance, without the problems associated with mismatched coefficients of thermal expansion during high temperature processes.
Abstract:
The present invention is related to a method for manufacturing micro-electro-mechanical systems (MEMS) having movable and stationary suspended structures formed from mono-crystalline silicon wafer or chip, bonded to a substrate wafer with an polymer adhesive layer that serves as spacer and as a sacrificial layer which is undercut by dry etch means. The substrate wafer contains electronic circuits for sensing and actuating the suspended structure by electrical means. Electrical interconnections between the suspended structures and the substrate can be made by etching through via holes in the suspended structure and the adhesive, depositing metal layers in the via holes, and removing the metal layers from outside the via holes. The metal layers in the via holes can also be used as pillars for supporting the suspended structures. This method can be used to manufacture inertial sensors.
Abstract:
A system and method for manufacturing micro cavities at the wafer level using a unique, innovative MEMS (MicroElectroMechanical Systems) process, wherein micro cavities are formed, with epoxy bonded single-crystalline silicon membrane as cap and deposited and/or electroplated metal as sidewall, on substrate wafers. The epoxy is also the sacrificial layer. It is removed from within the cavity through small etch access holes etched in the silicon cap before the etch access holes are sealed under vacuum. The micro cavities manufactured therein can be used as pressure sensors or for packaging MEMS devices under vacuum or inert environment. In addition, the silicon membrane manufactured therein can be used to manufacture RF switches.
Abstract:
The present invention is related to a method for manufacturing micro-electro-mechanical systems (MEMS) having movable and stationary suspended structures formed from mono-crystalline silicon wafer or chip, bonded to a substrate wafer with an polymer adhesive layer that serves as spacer and as a sacrificial layer which is undercut by dry etch means. The substrate wafer contains electronic circuits for sensing and actuating the suspended structure by electrical means. Electrical interconnections between the suspended structures and the substrate can be made by etching through via holes in the suspended structure and the adhesive, depositing metal layers in the via holes, and removing the metal layers from outside the via holes. The metal layers in the via holes can also be used as pillars for supporting the suspended structures. This method can be used to manufacture inertial sensors.
Abstract:
A system and method for manufacturing micro cavities at the wafer level using a unique, innovative MEMS (MicroElectroMechanical Systems) process, wherein micro cavities are formed, with epoxy bonded single-crystalline silicon membrane as cap and deposited and/or electroplated metal as sidewall, on substrate wafers. The epoxy is also the sacrificial layer. It is totally removed from within the cavity through small etch access holes etched in the silicon cap before the etch access holes are sealed under vacuum. The micro cavities manufactured therein can be used as pressure sensors or for packaging MEMS devices under vacuum or inert environment. In addition, the silicon membrane manufactured therein can be used to manufacture RF switches.