Abstract:
The present invention provides a matched filter circuit available for processing long P/N codes in a small size circuit. A matched filter circuit according to the present invention performs the following processes in the proposed invention: i) sampling and holding circuits multiply part of the number of a long code; ii) multipliers are input in parallel to the sampling and holding circuit from the first multiplier register which can hold as many PN codes as the number of the sampling and holding circuits in i); iii) the PN codes are stored in the second multiplier register of the same capacity of the first multiplier resister when there is a PN code to be used sequentially to be PN codes; and iv) the PN codes in the second multiplier register are transmitted in parallel to the first multiplier register. The PN code is input to the second multiplier register in serial.
Abstract:
A matched filter circuit for mobile communications is disclosed. The circuit may be fabricated in a small size using large-scale integration and can perform high-speed processing and double sampling at a reduced rate of power consumption. In one embodiment, a plurality of sampling and holding circuits each including a switch are divided into two groups. A control circuit successively closes one of the switches in the first group every chip time, while successively closing one of the switches in the second group at a timing shifted by one-half chip time from that of the first group, thereby enabling a double-sampling operation. Outputs of the sampling and holding circuits in each group are summed by an analog circuit with a high degree of linearity, resulting in a high processing speed combined with a reduced circuit size and power consumption.
Abstract:
The present invention realizes a rapid and efficient cell search and small-size instrument for an asynchronous DS-CDMA cellular system. This cell search detects the correlation between the received signal and the short code of the control channel, and matched filter 22 detects the maximum electric power correlation peak location. Next, using correlators 28-1 to 28-n which are parallelly set in a plurality for RAKE processing with plurality, identifies the long code that is set in the system with the detected long code timing. After the long code is synchronized, a multipath signal is received using 28-1 to 28-n, and the data is judged by RAKE processing. When peripheral cell search is executed, after long code timing is detected by using matched filter 22, the long code of the candidate peripheral cell is designated using the same matched filter. Handover is safely realized by receiving the signal from the connected base station by correlators 28-1 to 28-n, and the base station signal through handover by 22.
Abstract:
The present invention has an object to provide a matched filter circuit which is possible to synchronize a spreading code with an input signal. A matched filter according to the present invention samples input signal in response to three clocks from the first to the third shifted by a half cycle of a sampling signal so as to judge whether the sampling clock is ahead or behind of the input signal according to signs of input signal sampled. One clock is selected to be the sampling clock.
Abstract:
A matched filter contains a plurality of auxiliary sampling and holding circuits in addition to a main sampling and holding circuit containing multiple unit sampling and holding circuits. An auxiliary sampling and holding circuit is used to hold an input voltage, which would ordinarily be held by a unit sampling and holding circuit, when the unit sampling and holding circuit is being refreshed. By holding a part of the analog input voltage in the auxiliary sampling and holding circuits, refreshing is performed without decreasing the overall calculation speed.
Abstract:
An analog calculation circuit in a filter circuit is corrected in the calculation error by estimating the error from a calculation result of known inputs and known multiplier. A multiplier is changed according to the estimated error. The filter circuit has a voltage to current converter at an input side and a current to voltage converter at an output side and a calculation of current is performed therein.
Abstract:
A plurality of sets of spreading code sequences are stored in registers and selectively supplied to matched filters. The soft-handover, multi-code processing and long-delay paths can be processed by a small circuit.
Abstract:
A signal reception apparatus for DS-CDMA communication system having a complex matched filter for despreading a received signal into I- and Q-components Di and Dq of despread signal. Dj and Dq are input to a path selection portion 13 for extracting a phase error in a pilot symbol block of the despread signal. A phase compensation signal is calculated according to the phase error in the portion 13. An information symbol is compensated according to the phase compensation signal. An electrical power is calculated from an average of the phase compensation signal of several slots for selecting paths to be received. The selected paths are combined with phase synchronized by a rake combiner 14.
Abstract:
The present invention offers a method and a circuit for generating codes enabling transmission of long-codes to start on a reverse channel in a shorter waiting time. The method involves corresponding a shift quantity between the beginning of a sequence M or long-codes cycle, and each timing to a combination of a plurality of masking data; determining a combination of masking data for timing to start generation of long-codes in response to a transmission request at a point of time as soon as possible; and shifting of an initial value of a vector according to the masking data.
Abstract:
Cells are searched at a high speed using an initial synchronization method and a receiver for a DS-CDMA inter base station asynchronous cellular system. A base band received signal is input to a matched filter and is correlated with a spread code supplied from a spread code generator. A signal electric power calculator calculates the electric power of the correlation output of the matched filter, and outputs the result to a long code synchronization timing determiner, a threshold value calculator, and a long code identifier. During the initial cell search, the spread code generator outputs a short code #0 that is common to the control channel of each of the base stations. After the long code synchronization timing has been determined, each of the segments of the N chips which constitutes a portion of the synthesized spread code sequence synthesized from a long code #i that is unique to each of the base stations and the short code #0 is sequentially replaced and output.