Abstract:
An integrated two-phase anaerobic dry fermentation reactor based on a biomimetic principle of rumen includes a reactor body; wherein the reactor body includes a dry fermentation chamber, a secondary fermentation chamber, and a liquid storage chamber. The dry fermentation chamber is arranged at an upper portion of the reactor body. The liquid storage chamber is arranged at a bottom of the reactor body. The secondary fermentation chamber is arranged between the dry fermentation chamber and the liquid storage chamber in the reactor body. The dry fermentation chamber is connected to the secondary fermentation chamber by a porous structure.
Abstract:
The disclosure is a method for recovering groundwater contaminated with organic phenols. The method includes the step of injecting a remediation agent into the groundwater extracted from the stratum to be rehabilitated or ex-situ extracted, followed by the step of injecting manganese-based oxidant. By adding a suitable proportion of soluble silicon to the water to be treated as a remediation agent, the efficiency of manganese-based oxidant in the treatment of phenolic pollutants is enhanced based on interface properties and stability of various manganese oxides in the regulating and recovering process. The method for recovering groundwater contaminated with organic phenols provided by the disclosure has a simple process and is convenient to operate, the adopted chemicals are inexpensive and easy to obtain, cause little corrosion to the injection equipment, and has a wide range of applications in practice. The adopted oxidant will not produce halogenated toxic by-products during the treatment process.
Abstract:
A simulation system for an in-situ column experiment in a groundwater well and a simulation method are provided. The simulation system includes: an experimental column device, a sample taking device, and a sample injection device, where solid remediation agent and/or aquifer sediment are provided within the experimental column device, and is configured to be capable of being arranged in an experimental well and located below a water level; a bottom of the experimental column device is provided with a water inlet, and a top of the experimental column device is provided with a water outlet, where the top water outlet connects to the sample taking device, and the bottom water inlet connects to the sample injection device.
Abstract:
A silicified modified zero-valent iron, whose surface layer is a silicic-containing oxide layer formed by silicate, which is obtained by the following method: dissolved silicate and micron iron powder are used as raw materials and mixed in proportion, and ball milling under an inert gas atmosphere to obtain the silicified modified zero-valent iron. The invention also discloses the application of silicified modified zero-valent iron in repairing polluted water bodies. The invention uses green silicate as silicon source to carry out surface silicification modification of micron zero-valent iron, which has simple operation, low cost and is convenient for large-scale production. Moreover, the prepared silicified zero-valent iron has good dispersibility, high reduction activity and strong recycling performance, and can be used for the treatment of various polluted water bodies and soil.
Abstract:
Provided are a rapid detection method for a condition of landfill leachate polluting groundwater and an application thereof. The rapid detection method includes: carrying out fluorescence detection on groundwater in a specific region of a landfill, and determining whether the groundwater is polluted according to a ratio of fluorescence intensities at specific excitation/emission wavelengths in a specific fluorescence region. The rapid detection method provided by the solution establishes characteristic fluorescence spectrum regions, fluorescence intensities and regular characteristics thereof of organic matters in leachate-polluted groundwater of a landfill in a fluorescence spectrum region, and can achieve the rapid detection of a condition of landfill leachate polluting groundwater by means of a portable fluorescence detector on site. The detection method provided by the solution is characterized by rapid detection, no need of chemical reagents, simple operation, high detection sensitivity and lower cost.
Abstract:
It discloses a system for controlling heavy metals and a method for preventing and controlling heavy metals using the same. The system includes a constructed wetland (3), in which several layers of fillers are laid, so that water is allowed to flow through each layer of the filler to remove heavy metals. Preferably, a sandwich wall is constructed around the constructed wetland (3), and organic matters (12) which generating heat through fermentation is filled in the sandwich wall to supply heat to the constructed wetland (3) in winter. The sandwich wall is easy to build and the fermentation materials are cheap and easily available, thereby the present method is able to effectively solve the difficulties occurred in the operation of constructed wetland in winter.
Abstract:
The present invention involves a persulfate-release material used in the filler of permeable reactive barrier (PRB). This material presents double-layered structure characteristic: inner- and outer-layers are consisted of persulfate, cement, sand and water with different mass ratio. Two different types of moulds are used for the regulation of the shape of the two-layer structures, which guarantees the stability and reproducibility of its structures and properties. During the whole released process, the released rate become more uniform and stable by the use of this material. During the whole service period, the change of the released rate is very slow, and the service lifetime can be 1-10 years. This invention can both reduce the initial released rate and improve the later released rate, and thus the whole released rate can be more uniform, which can be an important method to promote the efficiency of the persulfate toward engineering application.
Abstract:
The present invention discloses an alkali-resistant microbial bacterium PDC-1 and its application. The present invention screens and isolates PDC-1 strain from the soil of a coal gangue stockpile in a coal mine in Shandong, China, which can utilize naphthalene, phenanthrene, anthracene or pyrene as the sole carbon source and has tolerance to heavy metals. The strain of the present invention is capable to degrade various PAHs with the presence of heavy metals. The strain is alkali resistant, simple to cultivate, and has a good application in the bioremediation of polycyclic aromatic hydrocarbons and heavy metal contaminated sites.
Abstract:
It discloses to a device and a method for controlling pollutants in metal mine water resources cycling utilization. The device includes a multi-stage inflow constructed wetland (3), in which one or more layers of the filler are laid, and water distribution pipes (4) are buried at different height levels in the filler layers for multi-stage inflow, so that the received basin water is allowed to flow through each layer of the filler to degrade or remove the pollutants. In the multi-stage inflow constructed wetland, the types of fillers, dosage ratio, particle size and filling height of fillers in each layer are specifically selected. Therefore, heavy metal adsorption, suspended matter filtration, organic matter degradation, dephosphorization and denitrification can be effectively realized in the multi-stage inflow constructed wetland.
Abstract:
The present invention relates to a method and a device for preventing and controlling pollutants in basin water resources utilization. The method includes: providing a hydrolysis tank (1), a nano-aeration tank (2) and a vertical subsurface flow constructed wetland (3) connected in sequence, salvaging duckweed and algae in the basin, then crushing, acidizing and digesting them in the hydrolysis tank (1), importing the supernatant obtained in the hydrolysis tank (1) into the nano-aeration tank (2), then mixing the water from the nano-aeration tank (2) with basin water and importing them into the vertical subsurface flow constructed wetland (3), treating to obtain basin water meeting the irrigation requirements.