Abstract:
A plunger, a needle assembly and a retractable syringe comprising same are provided. The plunger comprises a plunger member and a plunger outer having a lock spring that prevents or impedes movement of the plunger member after needle retraction. The plunger further comprises another locking member for engaging the barrel to prevent or impede further movement of the plunger outer after delivery of fluid contents. The plunger member has a plunger seal which engages a retractable needle of the needle assembly for retraction. The retractable needle comprises a cannula and needle body with a plurality of fluid channels that co-operate with a fluid conduit of the plunger seal to efficiently direct fluid to the cannula. A needle retainer comprises a plurality of barbed arms releasably coupled to the needle body, whereby an ejector with tabs facilitates release of the retractable needle from the needle retainer to allow compressed spring-driven retraction.
Abstract:
A disk drive suspension interconnect, and method therefor. The interconnect has a metal grounding layer, a metal conductive layer and an insulative layer between the metal grounding layer and the conductive metal layer. A circuit component such as a slider is electrically connected to the conductive layer along a grounding path from the circuit component and the conductive layer to the metal grounding layer through an aperture in the insulative layer. For improved electrical connection a tie layer is provided through the insulative layer onto the grounding layer in bonding relation with the ground layer. A conductor is deposited onto both the conductive metal layer and the tie layer in conductive metal layer and tie layer bonding relation, and the circuit component is thus bonded to the grounding layer by the conductor.
Abstract:
Progressively optimized clock tree/mesh construction is performed concurrently with placement of all remaining objects. Clock tree/mesh is specified loosely for initial placement, then followed by progressive detailed placement. In particular, preferred approach provides automated and reliable solution to clock tree/mesh construction, occuring concurrently with placement process so that clock tree wiring and buffering considers and influences placement and wiring of all other objects, such as logic gates, memory elements, macrocells, etc. Hence, in this concurrent manner, clock tree/mesh pre-wiring and pre-buffering may be based on construction of approximate clock tree using partitioning information only, i.e., prior to object placement. Further, present approach provides modified DME-based clock tree topology construction without meandering, and recursive algorithm for buffered clock tree construction.