摘要:
A wiring substrate includes a core substrate including a through-hole conductor, a first resin insulating layer, a first conductor layer including a seed layer and an electrolytic plating layer, a via conductor formed such that the via conductor electrically connects the through-hole conductor and first conductor layer, and a second resin insulating layer covering the first conductor layer. The core substrate includes a glass substrate such that the through-hole conductor is penetrating through the glass substrate, the seed layer includes a first layer formed on the first resin insulating layer and a second layer formed on the first layer, and the first conductor layer includes a conductor circuit such that a width of the first layer is larger than a width of the second layer in the conductor circuit and a width of the electrolytic plating layer is larger than the width of the first layer in the conductor circuit.
摘要:
A wiring substrate includes a core substrate including a through-hole conductor, a resin insulating layer formed on the core substrate, a conductor layer formed on a surface of the resin insulating layer and including a seed layer and an electrolytic plating layer formed on the seed layer, and a via conductor formed in the resin insulating layer such that the via conductor is connected to the through-hole conductor in the core substrate and includes the seed layer and electrolytic plating layer extending from the conductor layer. The core substrate includes a glass substrate such that the through-hole conductor is formed in a through hole penetrating through the glass substrate, and the conductor layer and via conductor are formed such that the seed layer is formed by sputtering and includes an alloy including copper, aluminum, and one or more metals selected from nickel, zinc, gallium, silicon, and magnesium.
摘要:
A printed wiring board includes a conductor layer, an outermost insulating layer formed on the conductor layer and having an opening exposing a portion of the conductor layer, and a metal post formed in the opening of the outermost insulating layer and including a seed layer and an electrolytic plating layer formed on the seed layer such that the metal post has a height exceeding a surface of the outermost insulating layer and has a portion exceeding a height of the outermost insulating layer, the seed layer of the metal post has a first layer and a second layer formed on the first layer. The portion exceeding the height of the outermost insulating layer is formed such that a width of the first layer is larger than a width of the second layer, and a width of the electrolytic plating layer is larger than the width of the first layer.
摘要:
A printed wiring board includes a first conductor layer, a resin insulating layer having an opening, a second conductor layer including a seed layer and an electrolytic plating layer formed on the seed layer, and a via conductor including the seed layer and the electrolytic plating layer and connecting the first conductor and second conductor layers. The seed layer has a first portion on the surface of the insulating layer, a second portion on an inner wall surface in the opening of the insulating layer, and a third portion on a portion of the first conductor layer exposed by the opening of the insulating layer such that the first portion is thicker than the second portion and the third portion, the second portion has a first film and a second film electrically connected to the first film, and a portion of the first film is formed on the second film.
摘要:
A thin film for a lead for brain applications includes at least one section comprising a high conductive metal and a low conductive metal, whereby the low conductive metal is a biocompatible metal and has a lower electrical conductivity than the high conductive metal and whereby the high conductive metal is at least partially encapsulated by the low conductive metal. Furthermore, the present invention relates to a method of manufacturing a thin film for a lead for brain applications and a deep brain stimulation system.
摘要:
A substrate with a transparent electrode which includes an amorphous transparent electrode layer on a transparent film substrate. When a bias voltage of 0.1 V is applied to the amorphous transparent electrode layer, the layer has continuous regions where a current value at a voltage-applied surface is 50 nA or more. Each of the continuous regions has an area of 100 nm2 or more and the number of the continuous regions is 50/μm2 or more. In one embodiment, the layer has a tin oxide content of 6.5% or more and 8% or less by mass. In another embodiment, the layer has a tin oxide content of 6.5% or more and 8% or less by mass. With respect to the substrate with a transparent electrode according to the present invention, the transparent electrode layer may be crystallized in a short period of time.
摘要:
The present application provides a conductive pattern laminate including: a substrate having concave portions or protrusion portions on an upper surface thereof; and a conductive film provided on an upper surface of concave portions or protrusion portions of the substrate and on a portion in which no concave portions or protrusion portions are present on the upper surface of the substrate, in which the conductive film provided on the upper surface of concave portions or protrusion portions of the substrate and the conductive film provided on the portion in which no concave portions or protrusion portions are present on the upper surface of the substrate are electrically disconnected from each other, a method for manufacturing the same, and an electronic apparatus including the laminate.
摘要:
An opto-electric hybrid board includes: an electric circuit board including an insulation layer haying front arid back surfaces, arid electrical interconnect lines formed on the front surface of the insulation layer; and an optical waveguide having a substantially rectangular shape as seen in plan view and provided on the back surface of the insulation layer of the electric circuit board, with a metal layer therebetween. The optical waveguide has at least one end portion disposed in overlapping relation with the metal layer. The at least one end portion of the optical waveguide has corner portions. Each of the corner portions is radiused to have an arcuate shape or has a polygonal shape produced by arranging a plurality of obtuse-angled portions in a substantially arcuate configuration.
摘要:
A method of making an electronic device may include forming at least one circuit layer that includes solder pads on a substrate and forming at least one liquid crystal polymer (LCP) solder mask having mask openings therein. The method may also include forming at least one thin film resistor on the LCP solder mask and coupling the at least one LCP solder mask to the substrate so that the at least one thin film resistor is coupled to the at least one circuit layer and so that the solder pads are aligned with the mask openings.
摘要:
A method of achieving precision registration in a roll to roll process by simultaneously depositing multiple inks onto a printing roll. One of these inks prints a pattern of fiducial marks onto a substrate while another ink prints a predetermined pattern on the same substrate such that the predetermined pattern bears a predictable spatial relationship to the pattern of fiducial marks. Consequently, even if the ink forming the predetermined pattern is invisible, or has such low contrast with the substrate that it is effectively invisible, or even has been dissolved away in a subsequent processing step, it is still possible to know where the predetermined pattern is by referring to the pattern of fiducial marks.