Abstract:
A process for the production of metal nanoparticles. The process comprises a rapid mixing of a solution of at least about 0.1 mole of a metal compound that is capable of being reduced to a metal by a polyol with a heated solution of a polyol and a substance that is capable of being adsorbed on the nanoparticles.
Abstract:
A metal nanoparticle composition for the fabrication of conductive features. The metal nanoparticle composition advantageously has a low viscosity permitting deposition of the composition by direct-write tools. The metal nanoparticle composition advantageously also has a low conversion temperature, permitting its deposition and conversion to an electrical feature on polymeric substrates.
Abstract:
An electrical conductor formed from one or more metallic inks. The electrical conductor comprises a network of interconnected metallic nodes. Each node comprises a metallic composition, e.g., one or more metals or alloys. The network defines a plurality of pores having an average pore volume of less than about 10,000,000 nm3. The electrical conductors advantageously have a high degree of conductivity, e.g., a resistivity of not greater than about 10× the resistivity of the (bulk) metallic composition, which forms the individual nodes.
Abstract:
Processes for planarizing a substrate, for encapsulating a printed electronic feature and for forming a ramp feature. In various embodiments, the processes include the steps of: (a) applying a planarizing agent, an encapsulating agent or a ramping feature to a substrate or to an electronic feature disposed thereon, preferably through a direct write printing process, e.g., ink-jet printing, and (b) treating the applied agent under conditions effective to form a planarizing feature, an encapsulation layer or a ramping feature.
Abstract:
A process for fabricating an electrical component having at least one anisotropic electrical quality is provided. The process includes the step of ink-jet printing a plurality of dots of each of at least two electronic inks in a predetermined pattern such that the anisotropic electrical quality is manifested. The ink-jet printing step may further include the steps of: selecting a first electronic ink having a known first electrical characteristic; selecting a second electronic ink having a known second electrical characteristic; determining a positional layout for each of a plurality of dots for each of the first and second electronic inks such that the determined positional layout provides a response of the electrical component in accordance with the anisotropic electrical quality; and printing each of the plurality of dots of each of the first and second electronic inks onto a substrate according to the determined positional layout.