Abstract:
Techniques for sending Compute Express Link (CXL) packets over Ethernet (CXL-E) in a composable data center that may include disaggregated, composable servers. The techniques may include receiving, from a first server device, a request to bind the first server device with a multiple logical device (MLD) appliance. Based at least in part on the request, a first CXL-E connection may be established for the first server device to export a computing resource to the MLD appliance. The techniques may also include receiving, from the MLD appliance, an indication that the computing resource is available, and receiving, from a second server device, a second request for the computing resource. Based at least in part on the second request, a second CXL-E connection may be established for the second server device to consume or otherwise utilize the computing resource of the first server device via the MLD appliance.
Abstract:
Techniques for sending Compute Express Link (CXL) packets over Ethernet (CXL-E) in a composable data center that may include disaggregated, composable servers. The techniques may include receiving, from a first server device, a request to bind the first server device with a multiple logical device (MLD) appliance. Based at least in part on the request, a first CXL-E connection may be established for the first server device to export a computing resource to the MLD appliance. The techniques may also include receiving, from the MLD appliance, an indication that the computing resource is available, and receiving, from a second server device, a second request for the computing resource. Based at least in part on the second request, a second CXL-E connection may be established for the second server device to consume or otherwise utilize the computing resource of the first server device via the MLD appliance.
Abstract:
In some examples, a printed circuit board assembly can include a printed circuit board having four (4) central processor unit (CPU) sockets disposed thereon and sixty four (64) dual in-line memory modules (DIMMs) disposed thereon. The printed circuit board can have a top surface and a bottom surface with two (2) CPU sockets and thirty two (32) DIMMs disposed on the top surface and two (2) CPU sockets and thirty two (32) DIMMs disposed on the bottom surface.
Abstract:
A highly scalable application network appliance is described herein. According to one embodiment, a network element includes a switch fabric, a first service module coupled to the switch fabric, and a second service module coupled to the first service module over the switch fabric. In response to packets of a network transaction received from a client over a first network to access a server of a data center having multiple servers over a second network, the first service module is configured to perform a first portion of OSI (open system interconnection) compatible layers of network processes on the packets while the second service module is configured to perform a second portion of the OSI compatible layers of network processes on the packets. The first portion includes at least one OSI compatible layer that is not included in the second portion. Other methods and apparatuses are also describe.
Abstract:
A composite connector includes modular data connectors, electrical power connectors, a fluid exchange connector, an alignment feature, and a housing. The modular data connectors include electrical data connectors and optical data connectors and are configured to carry data. The electrical power connectors are configured to carry electrical power, and the fluid exchange connector is configured to carry cooling fluid. The composite connector includes an alignment feature to align the composite connector with a complementary connector. The housing of the composite connector is configured to contain the modular data connectors, the electrical power connectors, the fluid exchange connector, and the alignment feature in a confined physical space.
Abstract:
Techniques for sending Compute Express Link (CXL) packets over Ethernet (CXL-E) in a composable data center that may include disaggregated, composable servers. The techniques may include receiving, from a first server device, a request to bind the first server device with a multiple logical device (MLD) appliance. Based at least in part on the request, a first CXL-E connection may be established for the first server device to export a computing resource to the MLD appliance. The techniques may also include receiving, from the MLD appliance, an indication that the computing resource is available, and receiving, from a second server device, a second request for the computing resource. Based at least in part on the second request, a second CXL-E connection may be established for the second server device to consume or otherwise utilize the computing resource of the first server device via the MLD appliance.
Abstract:
Embodiments herein describe a computing system which is reconfigurable into different server configurations that have different numbers of sockets. For example, the computing system may include two server nodes which can be configured into either two independent servers (i.e., two 2S servers) or a single server (i.e., one 4S server). In one embodiment, the computing system includes a midplane which is connected to processor buses on the server nodes. When configured as a single server, the midplane connects the processor bus (or buses) on one of the server nodes to the processor bus or buses on the other server node. In this manner, the processors in the two server nodes can be interconnected to function as a single server. In contrast, the connections between the server nodes in the midplane are disabled when the server nodes operate as two independent servers.
Abstract:
In one embodiment, an electric vehicle system includes a power system for charging a battery installed in an electric vehicle and comprising a bi-directional power and data connector for receiving power and data from or transmitting the power and data to an electric vehicle charging device, a communications system comprising a server and configured for receiving power from the power system and receiving data from or transmitting the data to the power system for download or upload at the electric vehicle charging device, and an authentication module for authenticating the electric vehicle charging device. A method is also disclosed herein.
Abstract:
In one embodiment, an electric vehicle system includes a power system for charging a battery installed in an electric vehicle and comprising a bi-directional power and data connector for receiving power and data from or transmitting the power and data to an electric vehicle charging device, a communications system comprising a server and configured for receiving power from the power system and receiving data from or transmitting the data to the power system for download or upload at the electric vehicle charging device, and an authentication module for authenticating the electric vehicle charging device. A method is also disclosed herein.
Abstract:
In one example, at least one peripheral interconnect switch obtains, from a first endpoint device, a message initiating a direct memory access data transfer between the first endpoint device and a second endpoint device. The message indicates an address assigned to the second endpoint device by a host device as a destination of the message. Based on the address assigned to the second endpoint device by the host device, the at least one peripheral interconnect switch identifies an address assigned to the second endpoint device by the at least one peripheral interconnect switch. In response to identifying the address assigned to the second endpoint device by the at least one peripheral interconnect switch, the at least one peripheral interconnect switch provides the message to the second endpoint device.