Abstract:
Embodiments herein describe a distributed system that includes a central controller coupled to a plurality of separate radio heads. Each of the radio heads is coupled to the central controller via respective wired backends (e.g., cables). The radio heads includes one or more transceivers (e.g., radios) and antennas for wireless communicating with client devices. In the embodiments herein, the central controller can perform a variant of CCA to determine if a first one of the radio head can transmit wireless signals to, or receive wireless signals from, a first client device while a second radio head is communicating with a second client device using a combination of RTS/CTS, channel sensing, and interference cancellation techniques.
Abstract:
In one embodiment, a wireless access point that serves at least one client device in a wireless local area network transmits frames to the at least one client device so that the frames are received by the at least one client device with a receive signal strength so as to control the transmission of probe request messages by the at least one client device.
Abstract:
Presented herein are techniques for using mobile client density to compensate for variations in path loss between neighboring access points. In one example, a device (e.g., wireless controller) determines one or more mobile client density variation trends in a wireless network location and determines one or more neighbor message power variation trends between at least first and second access points within the wireless network location over a time period. The device generates one or more correlation bias factors using the mobile client density variation trends and the neighbor message power variation trends over the time period. The device determines a path loss between at least the first and second access points using the correlation bias factor.
Abstract:
A method is provided in which an AP of a MLD AP device may decide to include all out-of-link BSS parameters updates in a beacon frame (beacon). A flag is included in the beacon frame to indicate that all updates are included in the beacon frame and thus the client device that receives the beacon frame should not send probe request frames (probe requests) to obtain these updates. Thus, a non-AP MLD that receives a beacon frame with the above indication and that has all critical BSS parameters corresponding to the Change Sequence Number (CSN) that preceded the updates indicated by the AP, should not send probe requests to obtain the updated parameters. The number of bits to assign to the complete BSS Update Report Indication flag may vary depending on the number of updates to be reported.
Abstract:
Systems, methods, and computer-readable media may determine location-related data for a plurality of access points located in an area in communication with a network by determining that a plurality of access points in a network are associated with a same geographical area including identifying, from among the plurality of access points, a first access point associated with the geographical area, determining first location-related data for the first access point, determining second location-related data for a second access point of the plurality of access points, the second access point being interior to the first access point within the network based at least in part on a determination that the second access point has at least a threshold number of the neighbor access points, and exchanging ranging data indicative of a first relative distance between the first access point and the second access point, the ranging data based at least in part on ranging message exchange measurements.
Abstract:
Collision avoidance in Multi Link Device (MLD) Make Before Break Roaming (MBBR) may be provided. It may be determined that a client device may comprise an MBBR client device. Next, a Request To Send (RTS) may be sent to the client device. In response to sending the RTS to the client device, a Clear To Send (CTS) may be received from the client device. In response to receiving the CTS, data may be sent to the client device.
Abstract:
Dynamic spectrum access mode based on station capabilities is provided by categorizing functionalities of Access Points (APs) and mobile stations (STA) in a wireless network; identifying interference induced by external signaling devices on channels in the wireless network; calculating an impact factor of the interference based on proximity of the external signaling devices to the wireless network, a pattern of the external signaling devices, and an extent of overlap with frequencies used by the external signaling devices and the wireless network; and in response to identifying a given STA that is paired with a given AP in the wireless network, wherein the given STA and the given AP are both categorized as being capable of both multilink communications and preamble puncturing, assigning network resources for the given STA to communicate with the given AP via one of multilink communications or preamble puncturing based on the impact factor of the interference.
Abstract:
An access point in a wireless network communicates wirelessly with one or more client devices over a channel that includes a plurality of subchannels. Radar is detected on a first subchannel of the plurality of subchannels. It is determined to puncture the first subchannel, based on the detecting the radar on the first subchannel and based on one or more puncturing factors. The first subchannel is punctured, the puncturing comprising muting one or more subcarriers on the first subchannel.
Abstract:
Flexible radio assignment with beamsteering antennas is provided by controlling a plurality of Access Points (APs) including steerable antennas to each transmit a first plurality of discovery frames at a first beamwidth; controlling the plurality of APs to steer the steerable antennas at a second beamwidth, less than the first beamwidth, to a plurality of steering angles; controlling the plurality of APs to each transmit a second plurality of discovery frames at each steering angle of the plurality of steering angles; determining an overlap in radio coverage among the plurality of APs based on the first plurality and the second plurality of discovery frames; and identifying redundant radios based on the overlap in radio coverage; and reassigning the redundant radios from use for client transmissions to a secondary role.
Abstract:
Techniques for distributed computation are provided. A plurality of edge computing devices available to execute a computing task for a client device is identified, and a first latency of transmitting data among the plurality of edge computing devices is determined. A second latency of transmitting data from the client device to the plurality of edge computing devices is determined, and a set of edge computing devices, from the plurality of edge computing devices, is determined to execute the computing task based at least in part on the first and second latencies. Execution of the computing task is facilitated using the set of edge computing devices, where the client device transmits a portion of the computing task directly to each edge computing device of the set of edge computing devices.