Abstract:
Excess radio-frequency (RF) power storage and power sharing RF Identification (RFID) tags, and related RFID tag connection systems and methods are disclosed. The excess RF power storage and power sharing RFID tags and related RFID tag connection systems and methods in embodiments disclosed herein allow connected RFID tags to store excess energy derived from excess received RF power in a shared energy storage device. In this manner, an individual RFID tag or a group of connected RFID tags in the RFID tag connection system can continue operation during temporary times when sufficient RF power is not being received from a RFID reader. Sharing stored energy derived from excess received RF power in a shared energy storage device among connected RFID tags in a RFID tag connection system can significantly mitigate problems of RF power interruption.
Abstract:
A fluidic module includes a monolithic closed-porosity ceramic body that has a first region and a second region with the first region disposed between the second region. The first and second regions are configured to differ from one another with respect to a common attribute of a ceramic material of the ceramic body. The common attribute can differ by forming the first and second regions from ceramic particles that differ with respect their particle sizes. The fluidic module further includes a tortuous fluid passage that extends through the ceramic body. The fluid passage is surrounded by the first region such that the fluid passage is separated entirely from the second region at least within a planar region of the ceramic body. The fluid passage has an interior surface with a surface roughness of less than or equal to 5 μm Ra. A method for forming the fluidic module is disclosed.
Abstract:
A module and process for forming a ceramic fluidic module (300) that includes a unified closed-porosity ceramic body (200) and a tortuous fluid passage (P) that extends through the body (200). The body (200) has a first mean density within a first layer (222) that is greater than a second mean density within a second layer (226). The first and second layers (222, 226) are axially serially arranged between opposed major surfaces (228, 229) of the body (200). The fluid passage (P) adjoins the first layer (222) of the body (200). The process includes pressing a first volume of ceramic powder (120) to form a pre-pressed body (150). A passage mold (130) is then positioned on the pre-pressed body (150). The pre-pressed body (150) and the passage mold (130) are then covered with a second volume of ceramic powder (125). The body (150), the mold (130), and the second volume of ceramic powder (125) are then pressed to form a pressed body (160). The pressed body (160) is heated and sintered to form the ceramic fluidic module (300).
Abstract:
A flow reactor or flow reactor component includes a base plate, a first fluid module having first and second major surfaces, an internal process fluid passage, and a heat exchange channel in the first major surface, the first major surface stacked on the base plate; a second fluid module having first and second major surfaces, an internal process fluid passage and a heat exchange channel in the first major surface, the first major surface stacked on the second major surface of the first fluid module, optional additional fluid modules of the same configuration as the first and second fluid modules stacked successively on the second fluid module, and a top plate having a heat exchange channel in a bottom major surface thereof with the bottom major surface stacked on an uppermost fluid module of (1) the second fluid module and (2) the optional additional fluid modules.
Abstract:
A silicon carbide flow reactor fluidic module comprises a monolithic closed-porosity silicon carbide body, a tortuous fluid passage extending through the silicon carbide body, the tortuous fluid passage having an interior surface, and one or more thermal control fluid passages also extending through the silicon carbide body, the interior surface having a surface roughness of less than 10 μm Ra. A process for forming such modules is also disclosed.
Abstract:
Fiber array spacers, optical fiber assemblies, optical assemblies, and methods for fabricating optical assemblies are disclosed. In one embodiment, an optical fiber assembly includes a fiber array spacer and a fiber ribbon having an array of optical fibers. The fiber array spacer has an array of spacer fibers, wherein individual spacer fibers of the array of spacer fibers are bonded to one another, and a diameter of the individual spacer fibers determines a height of the fiber array spacer. Each optical fiber of the array of optical fibers has an glass portion. The glass portion of each optical fiber is bonded to the fiber array spacer such that a longitudinal axis of the individual spacer fibers is transverse to a longitudinal axis of individual optical fibers of the fiber ribbon.
Abstract:
Disclosed herein are methods for making a bonded refractory material, the methods comprising preparing a slurry comprising glass precursor particles having an average particle size ranging from about 1 nm to about 200 nm; combining zirconia particles with the slurry to form a batch composition comprising at least about 80% by weight of zirconia; forming a green body from the batch composition; and sintering the green body to form a sintered refractory material. Sintered high-zirconia refractory materials can comprise at least about 80% by weight of zirconia having an average grain size of 100 microns or less, wherein the zirconia is interspersed in a glassy phase, and wherein the sintered refractory materials comprise about 15% or less by weight of the glassy phase. Melting vessels having at least one interior surface comprising such sintered zirconia refractory materials are further disclosed herein.
Abstract:
A method of making a fluidic device is provided. The method includes locating a meltable sheet material on a face of an extruded body including extended cells therein. At least some of the cells are interconnected by melting the sheet material such that the melted sheet material flows into the at least some of the cells to form a fluidic passage through the body defined within the at least some of the cells. The fluidic passageway may have a longitudinally serpentine path back and forth along the at least some of the cells.