摘要:
A trap device including at least one substance delivery element for introducing a substance therein is disclosed. The delivered substance may influence the nature of deposits that have formed within the trap device, may influence the formation of deposits within the trap device, or may cause a precipitate to form. Deposit interaction elements may be employed to influence the distribution or redistribution of deposits within the trap device. Deposit interaction elements may effect thermal conditions, introduce substances, or physically interact with deposits within the trap device. Further, a storage region within the trap device may be used to accumulate deposits. In one embodiment, a substantially continuous path through the trap device may be maintained or preserved so that deposits form within the trap device except substantially along the path. The present invention also encompasses a method of operation of a trap device as well as a system incorporating same.
摘要:
A trap device including at least one substance delivery element for introducing a substance therein is disclosed. The delivered substance may influence the nature of deposits that have formed within the trap device, may influence the formation of deposits within the trap device, or may cause a precipitate to form. Deposit interaction elements may be employed to influence the distribution or redistribution of deposits within the trap device. Deposit interaction elements may effect thermal conditions, introduce substances, or physically interact with deposits within the trap device. Further, a storage region within the trap device may be used to accumulate deposits. In one embodiment, a substantially continuous path through the trap device may be maintained or preserved so that deposits form within the trap device except substantially along the path. The present invention also encompasses a method of operation of a trap device as well as a system incorporating same.
摘要:
An apparatus and process for atomic layer deposition that minimizes mixing of the chemicals and reactive gases is disclosed. The first precursor and second precursor are only mixed with other chemicals and reactive gases when and where desired by installing and monitoring a dispensing fore-line. Also, independent and dedicated chamber outlets, isolation valves, exhaust fore-lines, and exhaust pumps are provided that are activated for the specific gas when needed.
摘要:
Chemical vapor deposition methods of forming titanium silicide including layers on substrates are disclosed. TiCl4 and at least one silane are first fed to the chamber at or above a first volumetric ratio of TiCl4 to silane for a first period of time. The ratio is sufficiently high to avoid measurable deposition of titanium silicide on the substrate. Alternately, no measurable silane is fed to the chamber for a first period of time. Regardless, after the first period, TiCl4 and at least one silane are fed to the chamber at or below a second volumetric ratio of TiCl4 to silane for a second period of time. If at least one silane was fed during the first period of time, the second volumetric ratio is lower than the first volumetric ratio. Regardless, the second feeding is effective to plasma enhance chemical vapor deposit a titanium silicide including layer on the substrate.
摘要:
A first cleaning is conducted on a plasma enhanced chemical vapor deposition chamber at room ambient pressure. After the first cleaning, elemental titanium comprising layers are chemical vapor deposited on a first plurality of substrates within the chamber using at least TiCl4. Thereafter, titanium silicide comprising layers are plasma enhanced chemical vapor deposited on a second plurality of substrates within the chamber using at least TiCl4 and a silane. Thereafter, a second cleaning is conducted on the chamber at ambient room pressure. In one implementation after the first cleaning, an elemental titanium comprising layer is chemical vapor deposited over internal surfaces of the chamber while no semiconductor substrate is received within the chamber. In another implementation, a titanium silicide comprising layer is chemical vapor deposited over internal surfaces of the chamber while no semiconductor substrate is received within the chamber.
摘要:
Chemical vapor deposition methods of forming titanium silicide including layers on substrates are disclosed. TiCl4 and at least one silane are first fed to the chamber at or above a first volumetric ratio of TiCl4 to silane for a first period of time. The ratio is sufficiently high to avoid measurable deposition of titanium silicide on the substrate. Alternately, no measurable silane is fed to the chamber for a first period of time. Regardless, after the first period, TiCl4 and at least one silane are fed to the chamber at or below a second volumetric ratio of TiCl4 to silane for a second period of time. If at least one silane was fed during the first period of time, the second volumetric ratio is lower than the first volumetric ratio. Regardless, the second feeding is effective to plasma enhance chemical vapor deposit a titanium silicide including layer on the substrate.
摘要:
A first substrate is provided within a chemical vapor deposition chamber. A reactive gas mixture comprising TiCl4 and a silane is provided within the chamber effective to first chemically vapor deposit a titanium silicide comprising layer on the first substrate. After the first deposit, the first substrate is removed from the chamber. After the first deposit, a first cleaning is conducted within the chamber with a chlorine comprising gas. After the first cleaning, a second cleaning is conducted within the chamber with a hydrogen comprising gas. After the second cleaning and after the removing, a titanium silicide comprising layer is chemically vapor deposited over a second substrate within the chamber using a reactive gas mixture comprising TiCl4 and a silane. Other implementations are disclosed.
摘要:
Chemical vapor deposition methods of forming titanium suicide including layers on substrates are disclosed. TiCl4 and at least one silane are first fed to the chamber at or above a first volumetric ratio of TiCl4 to silane for a first period of time. The ratio is sufficiently high to avoid measurable deposition of titanium silicide on the substrate. Alternately, no measurable silane is fed to the chamber for a first period of time. Regardless, after the first period, TiCl4 and at least one silane are fed to the chamber at or below a second volumetric ratio of TiCl4 to silane for a second period of time. If at least one silane was fed during the first period of time, the second volumetric ratio is lower than the first volumetric ratio. Regardless, the second feeding is effective to plasma enhance chemical vapor deposit a titanium silicide including layer on the substrate.
摘要:
Chemical vapor deposition methods of forming titanium silicide comprising layers on substrates are disclosed. TiCl4 and at least one silane are first fed to the chamber at or above a first volumetric ratio of TiCl4 to silane for a first period of time. The ratio is sufficiently high to avoid measurable deposition of titanium silicide on the substrate. Alternately, no measurable silane is fed to the chamber for a first period of time. Regardless, after the first period, TiCl4 and at least one silane are fed to the chamber at or below a second volumetric ratio of TiCl4 to silane for a second period of time. If at least one silane was fed during the first period of time, the second volumetric ratio is lower than the first volumetric ratio. Regardless, the second feeding is effective to plasma enhance chemical vapor deposit a titanium silicide comprising layer on the substrate.
摘要:
An apparatus and process for atomic layer deposition that minimizes mixing of the chemicals and reactive gases is disclosed. The first precursor and second precursor are only mixed with other chemicals and reactive gases when and where desired by installing and monitoring a dispensing fore-line. Also, independent and dedicated chamber outlets, isolation valves, exhaust fore-lines, and exhaust pumps are provided that are activated for the specific gas when needed.