Abstract:
A method includes displaying, on a touchscreen, a video comprising a video frame and determining, based on a saliency map of the video frame, a region of interest in the video frame. The method also includes detecting a touch on a region of the touchscreen while the video frame is displayed and generating a haptic response in response to determining that the region of the touchscreen overlaps with the region of interest.
Abstract:
The present disclosure describes a method for displaying supplemental content. The method includes determining environmental characteristics, e.g., wall space, empty areas, colors, etc., for a display environment, determining supplemental content based in part on a primary content displayed by a primary display, and displaying the supplemental content in the display environment.
Abstract:
An image processing system includes a computing platform having processing hardware, a display, and a system memory storing a software code. The processing hardware is configured to execute the software code to receive a three-dimensional (3D) digital model, surround the 3D digital model with multiple virtual cameras oriented toward the 3D digital model, and generate, using the virtual cameras, a multiple renders of the 3D digital model. The processing hardware is further configured to execute the software code to generate a UV texture coordinate space for a surface projection of the 3D digital model, and to transfer, using the multiple renders, lighting color values for each of multiple surface portions of the 3D digital model to the UV texture coordinate space.
Abstract:
The present application includes a computer implemented method including at least two modes for analyzing a stereoscopic image corresponding to a two dimensional image. The method includes analyzing one or more layers of the two dimensional image to determine a depth pixel offset for every pixel in the two dimensional image and creating by the processing element a depth map, such as a gray scale map, by coloring every pixel a color shade based on the respective depth pixel offset for the pixel. The method further includes displaying on a display an output image corresponding to the stereoscopic image, receiving a first user selection corresponding a first depth pixel offset, determining a plurality of pixels of the output image corresponding to the first depth pixel offset, and applying a first identifier to the plurality of pixels on the output image corresponding to the first depth pixel offset. Additionally, in a first mode the output image displayed includes the first identifier and in a second mode the output image displayed includes the depth map and the first identifier.
Abstract:
Implementations of the present invention involve methods and systems for converting a 2-D multimedia image to a 3-D multimedia image by utilizing a plurality of layers of the 2-D image. The layers may comprise one or more portions of the 2-D image and may be digitized and stored in a computer-readable database. The layers may be reproduced as a corresponding left eye and right eye version of the layer, including a pixel offset corresponding to a desired 3-D effect for each layer of the image. The combined left eye layers and right eye layers may form the composite right eye and composite left eye images for a single 3-D multimedia image. Further, this process may be applied to each frame of a animated feature film to convert the film from 2-D to 3-D.