Abstract:
The present invention relates to an in-line mixing apparatus and use therein for adding a polymer solution and dewatering an aqueous mineral suspension. Said method comprises statically mixing the aqueous mineral suspension with a poly(ethylene oxide) (co)polymer to form a dough-like material. The viscous mixture material is then dynamically mixed in an in-line reactor to reduce the mixture viscosity and to form microflocs and release water. Said method is particularly useful for the treatment of suspensions of particulate material, especially waste mineral slurries, especially for the treatment of tailings and other waste material resulting from mineral processing, in particular, the processing of oil sands tailings.
Abstract:
Disclosed are processes and apparatuses for producing a crystalline product. The processes and apparatuses may extend the operational time of an evaporative crystallizer by providing an internal volume or large deposit inventory for fouling deposits to reside without impacting the unit operation.
Abstract:
The present invention relates to a method for flocculating and dewatering oil sands fine tailings. Said method comprises mixing the aqueous mineral suspension with a poly(ethylene oxide) (co)polymer to form a dough-like material. The material is then dynamically mixed in an in-line reactor to break down the dough-like material to form microflocs having an average size of 1 to 500 microns, and to release water. The internal diameter of the in-line reactor is at most five times the internal diameter of the inlet pipe of the reactor. The suspension of microflocs has a viscosity of at most 1000 cP and a yield stress of at most 300 Pa.
Abstract:
The present invention relates to an in situ staged steam extraction method for removing petroleum products from a heavy oil or bitumen reservoir from subterranean locations. Specifically, each injection stage comprises a different steam composition. A steam composition may consist essentially of steam or may comprise one or more enhanced oil recovery agent.
Abstract:
The present invention relates to a method of dewatering an aqueous mineral suspension comprising introducing into the suspension a flocculating system comprising a mixture of polyethylene glycol and polyethylene oxide polymers, in particular a mixture of one or more low molecular mass polyethylene glycol with one or more high molecular mass polyethylene oxide. Said mixture of polyethylene glycol and polyethylene oxide polymers is useful for the treatment of suspensions of particulate material, especially waste mineral slurries. The invention is particularly suitable for the treatment of tailings and other waste material resulting from mineral processing, in particular, the processing of oil sands tailings.
Abstract:
Embodiments of the present invention relate to a mixing apparatus. Particularly, embodiments of the present invention provide a mixing apparatus for mixing fluid components such as phosgene and amine during a highly reactive chemical reaction. One embodiment provides a mixing conduit comprising a cylindrical sidewall defining an inner volume, wherein one or more jets are formed through the cylindrical sidewalls and connect to the inner volume and one or more flow obstructions disposed in the inner volume, wherein each flow obstruction is positioned upstream from an associated aperture.
Abstract:
Modified radial-flow rotor-stator mixers 10 comprise: A. A housing 13 comprising a first stator 16 and a second stator 17; B. A rotor 12 positioned between the first stator 16 and the second stator 17 so as to form a first chamber and a second chamber within the housing and to provide fluid communication between the first and second chambers, the rotor 12 connected to a rotatable shaft 11; C. A primary inlet 24 positioned within the first chamber at a low shear region; D. Two or more secondary inlets 30A, 30B positioned within the first chamber at one or more regions of higher shear than that of the primary inlet 24; and E. An outlet 26 positioned within the second chamber.
Abstract:
Embodiments of the present invention provide a mixing conduit (100) having at least a cylindrical inner surface or a cylindrical outer surface and increased number of jet openings (102). The mixing conduits according to embodiment of the present invention improve mixing rates thus reducing formation of undesired by-products without sacrificing structural integrity. Particularly, embodiments of the present invention provide a static mixer (150) having a substantially circular mixing conduit (100) with more than about 22 jet openings.