摘要:
The present application provides an authentication scheme that allows a device to provide additional authentication of a Publicly Switched Telephone Network (PSTN) identity assertion made in a PSTN call by also sending an Internet Protocol (IP) communication. The device sends the IP communication generally in parallel with the PSTN call. The IP communication includes a network identity assertion, which optionally may be authenticated using a cryptographically secure technique. The network identity assertion, being more difficult to falsify, provides additional authentication of the PSTN identity assertion.
摘要:
In one embodiment, a network device generates a protection policy responsive to identifying undesired voice data traffic. The network device then distributes the generated protection policy along a call path used for transferring the undesired voice data traffic. The proxy may distribute the protection policy by inserting the protection policy in a call response or other message that traces the call path back to a calling endpoint.
摘要:
Intercepting a secure communication session includes distributing a key from a key distribution point to establish a secure communication session between a first endpoint and a second endpoint. A secure channel is established between the key distribution point and an intercepting point. The intercepting endpoint may be determined to be authorized to intercept the secure communication session. The key is provided to the intercepting endpoint only if the intercepting endpoint is authorized to intercept the secure communication session, where the key provides the intercepting endpoint with access to intercept the secure communication session.
摘要:
Techniques are provided herein to enable monitoring of a real-time transport protocol (RTP) packet flow in devices along the path that the RTP packet flow traversed from a source to a destination. A device that is a source or destination of a RTP packet flow transmits a monitor request message that requests one or more other devices along a path of the RTP packet flow to monitor the RTP packet flow. The device that is the source or destination of the RTP packet flow receives one or more monitoring reports from the one or more other devices along the path of the RTP packet flow. This allows a device that requested monitoring of the RTP packet flow to analyze the monitor reports in order to determine a location of a cause of reduced performance in the RTP packet flow. e.g., missing packets, overly delayed packets, etc.
摘要:
Intercepting a secure communication session includes distributing a key from a key distribution point to establish a secure communication session between a first endpoint and a second endpoint. A secure channel is established between the key distribution point and an intercepting point. The intercepting endpoint may be determined to be authorized to intercept the secure communication session. The key is provided to the intercepting endpoint only if the intercepting endpoint is authorized to intercept the secure communication session, where the key provides the intercepting endpoint with access to intercept the secure communication session.
摘要:
In one embodiment a method and apparatus are provided that automatically establish an real time protocol (RTP) tunnel between an originator node or router and a terminator node or router, wherein the terminator node is close to a remote RTP peer. A method includes detecting a new flow of RTP packets wherein the RTP packets are encoded with a destination Internet Protocol (IP) address. Responsive to detecting the new flow, a probe is sent towards a same IP address as the destination IP address of the RTP packets. A response to the probe is received, the response including an identifier of a node that generated the response. Then, using the identifier, a tunnel is established with the node that generated the response, and thereafter compressed packets (compressed headers, compressed payloads, or both) are passed via the tunnel.
摘要:
In one embodiment, a signaling message is received from an endpoint. It is determined from the signaling message whether, prior to sending the signaling message, the endpoint performed network address translation on the body of the signaling message. If it is determined from the signaling message that, prior to sending the signaling message, the endpoint did not perform network address translation on the body of the signaling message, application layer gateway functionality is applied to the body of the signaling message such that a modified signaling message is generated.
摘要:
In one embodiment, a reservation proxy monitors for received connectivity check messages or beginning-of-media-flow indication messages. When either type of message is observed, the reservation proxy requests resource allocation for a media flow associated with the received message. The amount of resource allocation requested may be coordinated by exchanging messages with a call controller or policy server for one of the endpoints of the media flow, or the amount of resource allocation may be identified within the received message.
摘要:
Techniques are provided herein to enable monitoring of a real-time transport protocol (RTP) packet flow in devices along the path that the RTP packet flow traversed from a source to a destination. A device that is a source or destination of a RTP packet flow transmits a monitor request message that requests one or more other devices along a path of the RTP packet flow to monitor the RTP packet flow. The device that is the source or destination of the RTP packet flow receives one or more monitoring reports from the one or more other devices along the path of the RTP packet flow. This allows a device that requested monitoring of the RTP packet flow to analyze the monitor reports in order to determine a location of a cause of reduced performance in the RTP packet flow. e.g., missing packets, overly delayed packets, etc.
摘要:
A domain based tunneling scheme allows a Network Management System (NMS) to manage devices in a private network operating behind a NAT boundary. A device in the private network provides the NMS with information including a public NAT IP address, a private device IP address, and a unique device identifier. The NMS uses the public NAT IP address to set up and maintain a tunnel to the private network. The NMS stores the NAT information and a tunnel identifier in a table entry associated with the device. The NMS then uses the tunnel and the contents of the table entry to conduct management operations with the device operating in the private network.