Abstract:
A method of exploiting a medical technology comprising: providing at least two types of medical systems incorporating the medical technology. Each of the systems has first capabilities useful in performing a first type of medical procedure, and second capabilities useful in performing a second type of medical procedure. One of the medical systems is offered in exchange for payment allowing access to both the first and second capabilities, and the other of the medical system is offered will full access to the first capabilities in exchange for payment, while access to the second capabilities are restricted and separately sold to the purchaser on an episodic basis.
Abstract:
A progressing cavity pump (PCP) system that may be deployed in an existing well configuration without the need for a workover rig. A stator and tubing stop are first set in a conduit, such as production tubing, at a desired depth. In subsequent wireline runs, a pack-off and upper tubing stop are installed above the stator, which results in the stator assembly being set by tubing stops on top and bottom and results in the conduit above the PCP being isolated from the wellbore below. Installation of the system is completed by installing the rotor and by installing top-side drive equipment in the usual way. The PCP system allows the deployment of lift systems within existing well configurations without any element being deployed on tubing and provides the ability to retrofit a well with an insertable pump within existing tubing.
Abstract:
System for transcutaneous energy transfer. An implantable medical device, adapted to be implanted in a patient, has componentry for providing a therapeutic output. The implantable medical device has an internal power source and a secondary coil operatively coupled to the internal power source. An external power source, having a primary coil, provides energy to the implantable medical device when the primary coil of the external power source is placed in proximity of the secondary coil of the implantable medical device and thereby generates a current in the internal power source. An alignment indicator reports the alignment as a function of the current generated in the internal power source with a predetermined value associated with an expected alignment between the primary coil and secondary coil.
Abstract:
A medical electrical electrode includes an elongated conductive coil located over a lead body, and a conductive polymer material in contact with the lead body and located between individual coils of the elongated conductive coil. In certain embodiments, the conductive polymer is a polymer (e.g., silicone) implanted with a conductive filler (e.g., carbon black). In certain embodiments, the conductive polymer material is generally isodiametric with an outer diameter of the individual coils of the elongated conductive coil. A medical electrical electrode is fabricated by sliding an elongated conductive coil over a length of a lead body, dispersing a conductive polymer on the helical coil, inserting a tubing over the elongated conductive coil, distributing the polymer material between individual turns of the elongated conductive coil, heating the tubing so the tubing shrinks around the elongated conductive coil, and removing the tubing.
Abstract:
Methods and compositions for preparation of biological samples are disclosed. The methods include a prelysis step and a lysis step to make the cellular DNA available for further processing, amplification or analysis. The prelysis step includes the addition of a prelysis reagent to the cells. The prelysis reagent may include an enzyme to facilitate the disruption of the cells. The lysis step includes the addition of a lysis reagent to at least a portion of the prelysis reagent and cells.
Abstract:
The development of new compositions and new aromatic sulfur acrylate monomers results in improved hardcoat films, and improved optical films that contain the hard coat films. The films provide improved display systems when incorporated thereon. The combination of functionalized zirconia nanoparticles with multifunctional acrylate crosslinkers and high index of refraction aromatic sulfur acrylates, about 1.58 or greater, produces abrasion resistant hard coats that have relatively high refractive indices.
Abstract:
The present invention relates to methods and compositions for the inhibition of gene expression. In particular, the present invention provides oligonucleotide-based therapeutics for the inhibition of oncogenes involved in cancers.
Abstract:
External power source, and system and method using such external power source, for an implantable medical device having therapeutic componentry and a secondary coil operatively coupled to the therapeutic componentry. A primary coil is capable of inductively energizing the secondary coil when externally placed in proximity of the secondary coil. A repositionable magnetic core associated with the primary coil is capable of being repositioned by a user of the external power source. An indicator is capable of providing the user with information relative to coupling between the primary coil and the secondary coil as a function of repositioning of the repositionable magnetic core.