摘要:
Providing for distributed access point management for access to a mobile network is described herein. By way of example, an interface application maintained at a Femto cell base station (BS) can facilitate initial power up and/or acquisition for a Femto user terminal (UT). Upon start-up, a bootstrap process is utilized by the Femto cell to provision the UT with an SDL establishing at least one BS as high priority within a particular geographic area (GEO). Thus, when the Femto UT is within the GEO, the UT is more likely to acquire, camp on and/or handoff to the preferred BS. When outside the GEO, a serving access point can provision the Femto UT OTA with a custom SDL suited to another GEO having a different high priority access point. By implementing access point management at distributed access points, expensive network equipment can be mitigated or avoided.
摘要翻译:这里描述了用于访问移动网络的分布式接入点管理。 作为示例,维持在毫微微小区基站(BS)的接口应用可以有助于对于毫微微用户终端(UT)的初始加电和/或获取。 在启动时,毫微微小区利用自举进程来向UT提供在特定地理区域(GEO)内建立至少一个BS作为高优先级的SDL。 因此,当毫微微UT在GEO内时,UT更有可能获得,驻留和/或切换到首选BS。 在GEO外部,服务接入点可以为Femto UT OTA提供适合具有不同高优先级接入点的另一个GEO的自定义SDL。 通过在分布式接入点实现接入点管理,可以减轻或避免昂贵的网络设备。
摘要:
Transmit power (e.g., maximum transmit power) may be defined based on the maximum received signal strength allowed by a receiver and a minimum coupling loss from a transmitting node to a receiver. Transmit power may be defined for an access node (e.g., a femto node) such that a corresponding outage created in a cell (e.g., a macro cell) is limited while still providing an acceptable level of coverage for access terminals associated with the access node. An access node may autonomously adjust its transmit power based on channel measurement and a defined coverage hole to mitigate interference. Transmit power may be defined based on channel quality. Transmit power may be defined based on a signal-to-noise ratio at an access terminal. The transmit power of neighboring access nodes also may be controlled by inter-access node signaling.
摘要:
Systems and methods for performing a handoff of an access terminal from a macro node to a femto node are disclosed. To direct handoff of the access terminal, an identity of the femto node is determined. A femto node provided may be identified by at least a difference between the offset of a first pilot signal and the offset of a second pilot signal.
摘要:
Flows admitted to a mesh node may be controlled through contention access parameters. The admitting node may determine a desired transmission opportunity duration, and a transmission opportunity frequency. Furthermore, the node may achieve the flow rate and delay bound requirements of the admitted flow based at least in part upon the desired transmission opportunity duration, and the transmission opportunity frequency. The data rate and the access frequency of the admitted node may be monitored at the physical access level. The flow rate requirement may be accomplished based at least in part upon an adjustment to the transmission opportunity duration. The delay bound requirement may be accomplished at least in part upon manipulation of the contention access parameters. The transmission opportunity duration and the access parameters may be determined by the upstream admitting nodes, which may reduce congestion near mesh portals, and accomplish increased data transfer.
摘要:
A multi-antenna transmitting entity transmits data to a single- or multi-antenna receiving entity using (1) a steered mode to direct the data transmission toward the receiving entity or (2) a pseudo-random transmit steering (PRTS) mode to randomize the effective channels observed by the data transmission across the subbands. For transmit diversity, the transmitting entity uses different pseudo-random steering vectors across the subbands but the same steering vector across a packet for each subband. The receiving entity does not need to have knowledge of the pseudo-random steering vectors or perform any special processing. For spatial spreading, the transmitting entity uses different pseudo-random steering vectors across the subbands and different steering vectors across the packet for each subband. Only the transmitting and receiving entities know the steering vectors used for data transmission. Other aspects, embodiments, and features are also claimed and disclosed.
摘要:
An apparatus, method, and computer-program product are provided for wireless communication between uplink and downlink nodes via a relay. The relay is configured to simultaneously communicate with the uplink and downlink nodes on a common channel. For simultaneous communication, radio resources may be allocated to the relay to maintain orthogonality on both the uplink and downlink.
摘要:
Techniques for performing open-loop rate control in a TDD communication system are described. The channel quality of a first link is estimated based on a transmission received via the first link. The channel quality of a second link is estimated based on the estimated channel quality of the first link and an asymmetric parameter. At least one rate for a data transmission via the second link is selected based on the estimated channel quality of the second link. The estimated channel quality for each link may be given by a set of SNR estimates for a set of transmission channels on that link. The asymmetric parameter may be determined based on (1) the capabilities (e.g., transmit power, receiver noise figure, and number of antennas) of the transmitting and receiving stations or (2) received SNRs for the first and second links.
摘要:
The disclosure is directed to a mobile communication device that measures characteristics or attributes of a first communications network that vary according to physical location within that first communications network to create a fingerprint, or signature, of a location within the first communications network. When the fingerprint of the current location of the mobile device is created it can be compared to a known fingerprint associated with a second communication network to determine the mobile device's proximity to the second communications network. Furthermore, the second and subsequent fingerprint that are generated for a particular communications network can be used to modify the stored fingerprint so as to refine it to improve detecting the proximity to the communications network.
摘要:
A cell reselection parameter is transmitted on one carrier frequency for a defined period of time to cause access terminals operating on that carrier frequency to more aggressively search for access points on at least one other carrier frequency. For example, a femto cell operating on one carrier frequency may transmit a broadcast channel including a cell reselection parameter such as Sintersearch on another carrier frequency that is used by a macro cell. Here, the value of the cell reselection parameter (e.g., Sintersearch) is chosen so that the access terminals will more aggressively conduct inter-frequency searches. In addition, the cell reselection parameter is transmitted for a period of time that ensures that a nearby access terminal will receive the parameter during its wakeup interval.
摘要:
Embodiments addressing MAC processing for efficient use of high throughput systems are disclosed. In one aspect, a protocol stack is disclosed comprising one or more of the following: an adaptation layer, a data link control layer, a physical layer, and a layer manager. In another aspect, physical layer feedback is used for adaptation layer processing. In one embodiment, physical layer feedback is used for segmentation. In another embodiment, physical layer feedback is used for multicast mapping onto one or more unicast channels. In another aspect, a data unit for transmission from a first station to a second station comprises zero or more complete sub-data units, zero or one partial sub-data units from a prior transmission, and zero or one partial sub-data units to fill the data unit. In one embodiment, a pointer may be used to indicate the location of any complete sub-data units.