摘要:
An organic light emitting diode display includes a substrate, a first conductive layer disposed on the substrate, a second conductive layer formed on the first conductive layer, a third conductive layer formed on the first conductive layer or the second conductive layer. A first electrode disposed on the substrate at a display area, the first electrode including at least the first conductive layer, the second conductive layer, and the third conductive layer. An organic emissive layer is disposed on the first electrode. A second electrode is formed on the organic emissive layer. A pad is disposed on the substrate at a pad area neighboring the display area. The pad has the first conductive layer and the third conductive layer surrounding the lateral side of the first conductive layer.
摘要:
A thin film transistor including: a substrate; an active layer formed over the substrate; a gate insulating layer formed over the active layer; a gate electrode formed over the gate insulating layer; an interlayer insulating layer formed over the gate electrode; and source and drain electrodes that contact the active layer via the interlayer insulating layer. The source and drain electrodes may have a structure including an aluminum (Al) layer, an aluminum-nickel alloy (AlNiX) layer, and an indium tin oxide (ITO) layer, which are sequentially stacked.
摘要:
A thin film transistor including: a substrate; an active layer formed over the substrate; a gate insulating layer formed over the active layer; a gate electrode formed over the gate insulating layer; an interlayer insulating layer formed over the gate electrode; and source and drain electrodes that contact the active layer via the interlayer insulating layer. The source and drain electrodes may have a structure including an aluminum (Al) layer, an aluminum-nickel alloy (AlNiX) layer, and an indium tin oxide (ITO) layer, which are sequentially stacked.
摘要:
A thin-film transistor includes a structure for protecting an active layer, and an organic light-emitting display device including the thin-film transistor. The thin-film transistor includes: a gate electrode disposed on a substrate; a first insulating layer disposed on the gate electrode; an active layer disposed on the first insulating layer, and corresponding to the gate electrode; a second insulating layer disposed on the first insulating layer and covering the active layer, the second insulating layer including first and second openings exposing first and second portions of the active layer, respectively; a source electrode disposed on the second insulating layer and connected to the first portion of the active layer via the first opening of the second insulating layer; a drain electrode disposed on the second insulating layer and connected to the second portion of the active layer via the second opening of the second insulating layer; and a dummy member disposed on the second insulating layer and corresponding to at least a third portion of the active layer between the first and second portions of the active layer.
摘要:
An organic light emitting diode (OLED) display device and a method of fabricating the same. The OLED display device includes a substrate including an emission region and a non-emission region, a buffer layer arranged on the substrate, a semiconductor layer arranged in the non-emission region on the buffer layer, a gate insulating layer arranged on an entire surface of the substrate, a first electrode arranged in the emission region on the gate insulating layer, a gate electrode arranged in the non-emission region on the gate insulating layer, an interlayer insulating layer arranged on the entire surface of the substrate and partially exposing the first electrode, source and drain electrodes arranged on the interlayer insulating layer and electrically connected to the semiconductor layer and the first electrode, a protection layer arranged on the entire surface of the substrate and partially exposing the first electrode, an organic layer arranged on the first electrode and a second electrode arranged on the entire surface of the substrate.
摘要:
A flexible organic light-emitting display device has a thin film encapsulation structure. The flexible organic light-emitting display device can be manufactured by a method including sequentially stacking a glass substrate, a first flexible substrate in which conductive particles are integrally dispersed, a display unit comprising a thin film transistor (TFT) layer and a light-emitting layer, and a second flexible substrate. The glass substrate can then be separated from the first flexible substrate by emitting light.
摘要:
An organic light emitting display device in which a failure rate is reduced and thus product yield is improved, and a method of fabricating the same. The organic light emitting display device includes: a substrate; a thin film transistor disposed on the substrate, the thin film transistor including a semiconductor layer, a gate electrode, and source and drain electrodes; a first insulating layer disposed on the thin film transistor; an inorganic planarization layer disposed on the first insulating layer; a second insulating layer disposed on the inorganic planarization layer; a first electrode disposed on the second insulating layer, and electrically connected to the source and drain electrodes; an organic layer disposed on the first electrode, the organic layer including an emissive layer; and a second electrode disposed on the organic layer.
摘要:
An organic light emitting display device and a method of fabricating the same are provided. A trench is formed in a planarization layer, and then a first electrode is formed to have opposite ends in the trench, thereby reducing a height difference between the planarization layer and the first electrode. That is, the thickness of a pixel defining layer formed on the first electrode may be reduced by reducing or minimizing protrusion of the first electrode with respect to the planarization layer. Thus, transfer efficiency can be increased when an organic layer is formed by a laser induced thermal imaging method, and reliability of a device can be improved by reducing or preventing thermal damage of the organic layer and open defects.
摘要:
Provided are a thin film transistor (TFT) panel, a method of fabricating the same, and an organic light emitting display device (OLED) including the same. The TFT panel has a TFT region and a capacitor region. A TFT is formed in the TFT region and a capacitor is formed in the capacitor region. The TFT includes an active layer that includes a source and a drain regions. A gate insulation layer is formed on the active layer, and a gate electrode is formed on the gate insulation layer over the active layer. A source and a drain electrodes are formed over the active layer, and connected to the source and drain regions, respectively. In the TFT region, an interlayer insulation layer is formed between the gate electrode and the source/drain electrodes. In the capacitor region, an interlayer insulation layer is formed between a capacitor lower electrode and a capacitor upper electrode to form a capacitor. The interlayer insulation layers of the TFT region and the capacitor region have different layer structures and have different dielectric constants. Therefore, the capacitor region can have higher capacitance while the TFT region can have lower capacitance to reduce parasitic capacitance.
摘要:
An organic light emitting display device (OLED) and a method of fabricating the same. The OLED includes: a substrate; a thin film transistor on the substrate and including a source electrode and a drain electrode; a first insulating layer on the substrate having the source and drain electrodes; a second insulating layer on the first insulating layer and including a trench; a via hole formed in the trench over the first and second insulating layers and exposing a portion of the source electrode or the drain electrode; a first electrode in the trench and connected to one of the source electrode and the drain electrode through the via hole; a pixel defining layer on the first electrode and having an opening exposing the first electrode; an organic layer in the opening and having at least an organic emission layer; and a second electrode on an entire surface of the substrate having the organic layer.