Abstract:
Stabilized peroxycarboxylic acid compositions and the solid supported peracid stabilizers are provided. Methods of producing the solid supported peracid stabilizers are provided. The solid supported peracid stabilizers and the stable peroxycarboxylic acid compositions are particularly suitable for use in sanitizing equipment and surfaces to reduce yeasts, spores and bacteria, including those having contact with food, food products and/or components thereof, which require or benefit from infection control suitable for direct contact with such food sources.
Abstract:
Self-indicating chemistries are provided for visual detection by a user of efficacious levels of peroxycarboxylic acid concentrations in a solution produced in situ. The self-indicating chemistries include a combination of dyes providing a visual color indication, such as a tri-color indicator system, such as a yellow, green, and red color system indicating in situ threshold levels of peroxycarboxylic acid concentrations in a solution employing the self-indicating chemistry. Systems, kits and compositions for a quantitative assessment of an in situ perhydrolysis reaction to generate peroxycarboxylic acids are provided. Methods of use are further provided.
Abstract:
The present disclosure is related to percarboxylic acid compositions formed in situ in non-equilibrium reactions. The peroxycarboxylic acid compositions are formed using ester based starting materials. Methods for using the percarboxylic acid compositions are also disclosed.
Abstract:
Compositions and methods for the use of peracid compositions having low to substantially no hydrogen peroxide for various water treatments, including oil- and gas-field operations, and/or other aseptic treatments are disclosed. In numerous aspects, peracetic acid is the preferred peracid and is treated with a peroxide-reducing agent to substantially reduce the hydrogen peroxide content. Methods for using the treated peracid compositions for treatment of drilling fluids, frac fluids, flow back waters and disposal waters are also disclosed for improving water condition, reducing oxidizing damage associated with hydrogen peroxide and/or reducing bacteria infestation.
Abstract:
Methods and systems for temperature-controlled, on-site generation of peracids, namely peroxycarboxylic acids and peroxycarboxylic acid forming compositions are disclosed. In particular, methods for using an adjustable biocide formulator or generator system overcome the limitations of temperature on the kinetics of the peracid generation and/or peracid decomposition inside an adjustable biocide formulator or generator system. The methods include the controlling of the temperature of at least one raw starting material, namely water, to improve upon methods of on-site generation of peracids. The methods allow for the generation of user-selected chemistry without regard to the ambient temperatures of the raw starting materials and/or the biocide formulator or generator system.
Abstract:
The present disclosure is related to percarboxylic acid compositions formed in situ in non-equilibrium reactions. The peroxycarboxylic acid compositions are formed using ester based starting materials. Methods for using the percarboxylic acid compositions are also disclosed.
Abstract:
The present disclosure is related to percarboxylic acid compositions formed in situ in non-equilibrium reactions. The peroxycarboxylic acid compositions are formed using ester based starting materials. Methods for using the percarboxylic acid compositions are also disclosed.
Abstract:
Peracid stable fluorescent active compounds in highly acidic, equilibrium peroxycarboxylic acid sanitizing compositions are disclosed as having improved fluorescent stability allowing for monitoring of peroxycarboxylic acid concentration by conductivity and/or optical sensors. Beneficially, the compositions are also low odor and low/no VOC dual functioning acid wash and sanitizing compositions.
Abstract:
Methods of generating performic acid by contacting aqueous oxidizing agent and aqueous formic acid source in liquid phase are disclosed. A system and apparatus for the in situ production of the performic acid chemistries is further disclosed. In particular, a continuous flow reactor is provided to generate performic acid at variable rates. Methods of employing the oxidizing biocide for various disinfection applications are also disclosed.
Abstract:
The present invention relates to novel combined laundry detergent, bleach, and antimicrobial composition incorporating novel sulfoperoxycarboxylic acid compounds, and methods for making and using them. The sulfoperoxycarboxylic compounds used in compositions of the invention are storage stable, water soluble and have low to no odor. Compositions of the invention may be in the form of a liquid, a solid, or a gel. The sulfoperoxycarboxylic compounds useful in preparing compositions of the present invention can be formed from non-petroleum based renewable materials.