Abstract:
Provided are a spatial light modulator (SLM) and a method of fabricating the same. The complex spatial light modulator includes a thin film transistor (TFT) layer provided on a substrate, an amplitude type SLM and a phase type SLM electrically connected to the TFT layer, and a first polarizer provided on the phase type SLM, wherein the TFT layer includes transistors electrically connected to the amplitude type SLM and the phase type SLM, respectively, and the amplitude type SLM and the phase type SLM are commonly and electrically connected to the TFT layer and driven.
Abstract:
A liquid crystal display device may include a liquid crystal and a coloring material including at least one of yellow, magenta, and cyan coloring materials. The coloring material may have high solubility and dispersion stability on the liquid crystal, and thus, it can be used for a liquid crystal layer. The liquid crystal display device may include a partition delimiting pixels, and the liquid crystal layer may be provided in the pixels. The pixels may include first, second, and third pixels. The coloring materials in the first, second, and third liquid crystal layers may be adjusted, in terms of kind, composition, and weight percentage, to control colors to be displayed by the first, second, and third pixels.
Abstract:
Provided are reflective liquid crystal displays and methods of fabricating the same. the displays may include may include a first substrate, a reflective layer on the first substrate, a first electrodes on the reflective layer, a first insulating layer on the first electrodes, a second substrate facing the first substrate, a second electrode on the second substrate, a second insulating layer on the second electrode, and a liquid crystal layer between the first insulating layer and the second insulating layer. The second insulating layer has concavo-convex portions, which may be formed in contact with the liquid crystal layer to improve linearity of an incident light propagating from the second substrate toward the reflective layer and a reflected light propagating from the reflective layer toward the second substrate.
Abstract:
Encapsulation materials for light-emitting elements such as organic light-emitting diodes and polymer light-emitting diodes are implemented as a photopolymerizable hydrophobic fluid dispersion polymer having both adhesive and barrier properties. A light-emitting element encapsulation is formed by applying the photopolymerizable hydrophobic fluid dispersion polymer of the present invention to a manufactured light-emitting element and photocuring. An encapsulation structure may be formed in a short time through a simple coating (or filling) process and a curing process by exposure (UV, or the like), and thus an encapsulation of a light-emitting device (particularly, a large-area organic light-emitting diode) is possible at low cost without using expensive deposition equipment.
Abstract:
A method for manufacturing a window includes preparing a liquid crystal device comprising a support substrate, a first electrode, a liquid crystal layer, and a sacrificial structure. The method further includes removing the sacrificial structure from the liquid crystal device, forming a second electrode disposed on a glass layer, and attaching the liquid crystal device to the second electrode.
Abstract:
A light emitting apparatus and a window. The light emitting apparatus includes a liquid crystal device that includes a support substrate, a first electrode, a liquid crystal layer, and a sacrificial structure, separating the sacrificial structure from the liquid crystal layer to expose one surface of the liquid crystal layer, and a second electrode on the one surface of the liquid crystal layer.
Abstract:
Provided is an optoelectronic element including a first substrate, a first electrode on the first substrate, a first lens pattern disposed on the first electrode and including a liquid crystal and a black dye molecule, a second lens pattern disposed on the first lens pattern, and a second electrode on the second lens pattern, wherein the black dye molecule includes about 1 to 4 azo groups and about 2 to 5 aromatic cyclic compounds.
Abstract:
Provided is a liquid crystal device. The liquid crystal device includes a first substrate and a second substrate facing each other, a first electrode disposed between the first substrate and the second substrate and adjacent to the first substrate, a second electrode disposed between the first substrate and the second substrate and adjacent to the second substrate, a first alignment film disposed between the first electrode and the second electrode and adjacent to the first electrode, a second alignment film disposed between the first electrode and the second electrode and adjacent to the second electrode, and a liquid crystal layer disposed between the first alignment film and the second alignment film, wherein the liquid crystal layer includes a liquid crystal portion containing liquid crystal molecules, and a hydrophobic portion containing a hydrophobic material, the liquid crystal portion and the hydrophobic portion are phase-separated from each other, and the hydrophobic portion includes fluorine.
Abstract:
A color display device includes a plurality of pixels. Each of the pixels includes a first transparent electrode and a second transparent electrode, opposing to each other, a polymer layer between the first transparent electrode and the second transparent electrode, a first coloring material dispersed in the polymer layer, liquid crystals provided in the polymer layer, and a second coloring material dispersed in the liquid crystals. The first coloring material and the second coloring material presents different colors, and each of the first coloring material and the second coloring material includes at least one of a red coloring material, a green coloring material, a blue coloring material, a yellow coloring material, a cyan coloring material, and a magenta coloring material.
Abstract:
Provided is a display device and a method of manufacturing the same. The display device includes a reflective display part including a first cathode electrode and a first anode electrode and a liquid crystal layer, a light emitting display part including a second cathode electrode and a second anode electrode and a light emission film, and a thin film transistor part being electrically connected to the first and second anode electrodes. The light emitting display part further includes a bank disposed on one side of the second anode electrode between the second anode electrode and the light emission film.