Abstract:
A brake control system for a distributed power vehicle system includes a brake system and a distributed power control system in a first vehicle, and first and second separate communication links between the brake system and the distributed power control system. In operation, upon the initiation of a penalty brake application, the brake system transmits information about the brake level of the penalty brake application to the distributed power control system, over at least the first communication link. However, if the first communication link fails, the brake system redundantly transmits the information about the level of the penalty brake application to the distributed power control system over the second communication link. The information is transmitted from the distributed power control system in the first vehicle to remote vehicles for carrying out the penalty brake application.
Abstract:
A communication system for a rail vehicle includes a transceiver assembly, a selection module, and a monitoring module. The transceiver assembly selectively communicates a data signal over a plurality of communication channels. The data signal is related to distributed power operations of the rail vehicle. The selection module is communicatively coupled with the transceiver assembly and switches the transceiver assembly to any of the communication channels. The monitoring module is communicatively coupled with the selection module and determines a load parameter of one or more of the communication channels. The load parameter is based on a population value of the one or more communication channels. The selection module switches the transceiver assembly to a selected channel of the communication channels based on the load parameter for communicating the data signal over the selected channel.
Abstract:
A system comprises a control module that is configured for operable coupling with at least one of a brake system and/or a penalty detection system of a first vehicle. The control module is further configured to operate in a first mode of operation. In the first mode of operation, the control module activates the brake system, responsive to receiving a first control signal from a second vehicle; the first and second vehicles are coupled in a consist. Alternatively or additionally, the control module is configured to operate in a second mode of operation. In the second mode of operation, the control module is configured to generate the first control signal for transmission to the second vehicle and activation of a brake system of the second vehicle, responsive to receiving a second control signal from the penalty detection system.
Abstract:
A system comprises a control module that is configured for operable coupling with at least one of a brake system and/or a penalty detection system of a first vehicle. The control module is further configured to operate in a first mode of operation. In the first mode of operation, the control module activates the brake system, responsive to receiving a first control signal from a second vehicle; the first and second vehicles are coupled in a consist. Alternatively or additionally, the control module is configured to operate in a second mode of operation. In the second mode of operation, the control module is configured to generate the first control signal for transmission to the second vehicle and activation of a brake system of the second vehicle, responsive to receiving a second control signal from the penalty detection system.
Abstract:
In a system and method for communicating data in a locomotive consist or other vehicle consist (comprising at least first and second linked vehicles), a first electronic component in the first vehicle of the vehicle consist is monitored to determine if the component is in (or enters) a failure state. In the failure state, the first electronic component is unable to perform a designated function. Upon determining the failure state, data is transmitted from the first vehicle to a second electronic component on the second vehicle, over a communication channel linking the first vehicle and the second vehicle. The second electronic component is operated based on the transmitted data, with the second electronic component performing the designated function that the first electronic component is unable to perform.
Abstract:
In a transportation system comprising a fluid carrying brake pipe (14) connecting controlling member of the system and a controlled member (e.g., 12) a method of adaptively disabling an ability of the controlled member to respond to an unexpected brake pipe flow condition includes determining a braking state of the transportation system. The method also includes determining a degree of change in a brake pipe pressure during the braking state. The method further includes disabling an ability of the controlled member to respond to an unexpected brake pipe flow condition for a time period responsive to the braking state and the degree of change in the brake pipe pressure so that an undesired operation of the controlled member is limited.
Abstract:
A method for linking together three or more powered systems to operate as a single distributed power system, the method includes identifying a first linking protocol between at least a first powered system and a second powered system, determining whether at least a third powered system is compatible with the first linking protocol, if not compatible, switching to at least a second linking protocol to find a common linking protocol between the first powered system, the second powered system, and at least the third powered system, and linking the first powered system, the second powered system, and at least the third power system to operate in a distributed power configuration when the common linking protocol is found. A system and a computer software code linking together two or more powered systems to operate as a single distributed power system are also disclosed.
Abstract:
An adaptive brake system for a distributed power train responsive to an interruption in a communication system for the train and a brake application initiated at the lead locomotive, reduces the brake pipe fluid pressure at a lead locomotive and a remote locomotive to a predetermined pressure level to reduce in-train forces that may occur as a result of the pressure differentials in the brake pipe line of the lead and remote locomotives.
Abstract:
A method of controlling a neutral section operation of a train (14) including a lead locomotive (16) and at least one remote locomotive (12) in communication with the lead locomotive. The locomotives are electrically powered from respective electrical connections to a catenary (22) having at least one neutral section (26). The method includes sensing when a lead locomotive is proximate the neutral section of the catenary. The lead locomotive then commands the remote locomotive to perform a neutral section operation when the lead locomotive has traveled a distance equal to a distance (20) between the lead locomotive and the remote locomotive. The lead locomotive determines when to issue a neutral section command based on a speed of the lead locomotive and an elapsed time from when the lead locomotive senses its location proximate the neutral section.
Abstract:
Method and communication system for a railroad train having at least one locomotive for automatically adjusting the communication system to provide effective communication of command data to control operation of the locomotive are provided. The system includes a transceiver on the locomotive. The system further includes at least one transceiver remote from the locomotive. A database may be provided for storing data relative to a plurality of communication schemes available to the communication system. A first monitor may be used for sensing a parameter indicative of the quality of the communications between the transceivers when the transceivers are operating under a first one of the available communication schemes and generating data indicative of communications quality. A processor in communication with the monitor and the database may be configured to select a second communication scheme when the quality of the communications provided by the first communication scheme is not satisfactory to ensure that the command data will be reliably communicated with respect to the locomotive.