Abstract:
Provided is an information processing apparatus that acquires image data from an imaging apparatus including a light source and an imaging sensor and generating the image data by capturing an interference fringe image generated by irradiating an observation object with illumination light, and processes the acquired image data. The information processing apparatus includes a processor. The processor is configured to: extract a feature amount from the image data; and determine a quality of the interference fringe image included in the image data based on the feature amount.
Abstract:
An ultrasound diagnosis apparatus including: an ultrasound probe having a transducer array; and a processor configured to: perform transmission and reception of an ultrasonic beam from the transducer array toward a subject, into which contrast media including microbubbles is introduced; image a reception signal output from the transducer array to generate an ultrasound image of the subject; acquire trajectories of the microbubbles in a one cross section of the subject by tracking movement of the microbubbles based on the ultrasound image corresponding to the one cross section of the subject; detect, as a feature point, a trajectory, in which a distance between a start point and an end point in a prescribed time range is less than a prescribed value, among the trajectories of the microbubbles; and display the ultrasound image, the acquired trajectories and the detected feature point on the display unit.
Abstract:
An endoscope system comprises an image acquisition unit, a discrimination processing unit, and a discrimination processing control unit. The image acquisition unit acquires an endoscope image obtained by imaging an observation target using an endoscope. The discrimination processing unit discriminates a portion having a specific feature in the observation target by performing discrimination processing, using an endoscope image. The discrimination processing control unit controls a start or an end of the discrimination processing on the basis of a change in operation of an endoscope or the endoscope image.
Abstract:
An endoscope system includes a correction-value calculating unit that calculates a correction value of data to be used for calculation of the biological information or the like; an index-value calculating unit that calculates one type of index value or a plurality of types of index values to be used as a determination reference for determining whether, for example, the correction value is to be calculated; a determination unit that determines, by using the one type of index value or the plurality of types of index values, whether an endoscope image is appropriate for correction; and a correction unit that, if the determination unit determines that the endoscope image is appropriate for correction, corrects the endoscope image, the biological information, or the data by using the correction value calculated by using the endoscope image that has been determined to be appropriate for correction.
Abstract:
A correction image fluctuation amount obtained in a calibration mode and a measurement image fluctuation amount obtained in a measurement mode are compared with each other. On the basis of the comparison result, a temporary correction value, which satisfies a specific condition among temporary correction values stored in the correction value storage unit, is determined as a measurement correction value to be used for correction in a correcting unit.
Abstract:
There are provided an acoustic wave image generating apparatus and a control method thereof for making an insertion needle clear. A first ultrasound image is generated using ultrasound echo signals obtained from a first plurality of ultrasound transducers. From the first ultrasound image, an evaluation value indicating the discontinuity of a needle is calculated for an image of an insertion needle. In a case where the calculated evaluation value is less than a threshold value, a second ultrasound image is generated using ultrasound echo signals obtained from a second plurality of ultrasound transducers whose number is larger than the first plurality. The first ultrasound image is displayed if the evaluation value is equal to or greater than the threshold value, and the second ultrasound image is displayed if the evaluation value is less than the threshold value.
Abstract:
An object of the present invention is to provide an ultrasound diagnostic apparatus, a signal processing method, and a recording medium which are capable of eliminating a ghost signal with a small number of data when correcting element data by superimposing a plurality of element data, obtaining a high quality ultrasound image while preventing a decrease in the frame rate, and reducing the capacity of a memory. Information on a transmission frequency of an ultrasonic beam is acquired, and second element data is generated using a plurality of first element data on the basis of the acquired information on a transmission frequency.
Abstract:
The ultrasound diagnostic apparatus acquires an ultrasound image for examining an inspection object using an ultrasonic beam, and includes a sound velocity determiner configured to determine a sound velocity in the inspection object, and a sound velocity searching range setting section configured to set a range in which a sound velocity is searched by the sound velocity determiner. The sound velocity searching range setting section sets a sound velocity searching range using a sound velocity calculated in a predetermined range with respect to at least one of space and time.
Abstract:
An ultrasound inspection apparatus of the present invention includes: a probe provided with a plurality of elements; a transmitter configured to transmit the ultrasonic beam to an inspection object using the probe; a receiver configured to receive an ultrasonic echo signal from the inspection object; a sound velocity determiner configured to determine a sound velocity value inside the inspection object; and an element data processing section configured to generate a piece of second element data from at least two pieces of first element data using the sound velocity value, the piece of second element data corresponding to any of the at least two pieces of first element data, the sound velocity determiner being configured to obtain an optimum sound velocity value by optimizing the sound velocity value which is used when the piece of second element data is created in the element data processing section.
Abstract:
In this ultrasound diagnostic device and ultrasound diagnostic image data processing method, an element data determination unit compares a pre-set threshold value with the average value of the amplitude values in the element direction of the element data calculated by an average value calculation unit in the element direction, and an RF data calculation unit performs a process in which the element data of which the absolute value of the amplitude value is the maximum is adopted as the RF data without phasing addition when the average value (Aa) is greater than the threshold value. Meanwhile, when the average value (Ab) is equal to or lower than the threshold value, the RF data calculation unit performs a process in which the average values of all the amplitude values in the element direction of the element data are adopted as the RF data without phasing addition.