摘要:
Fabricating a core of a component (34A, 34B, 34C) from a stack (25, 36) of sheets (20) of material with cutouts (22A) in the sheets aligned to form passages (38) in the core. A casing preform (28) is then fitted over the core. The preform is processed to form a casing (29) that brackets at least parts of opposed ends of the stack. Shrinkage of the casing during processing compresses (46) the sheets together. The preform may slide (52) over the core, and may be segmented (28A, 28B, 28C) to fit over the core. A hoop (66) may be fitted and compressed around the segmented casing (29A, 29B, 29C).
摘要:
A ceramic matrix composite (CMC) structure 12 includes a plurality of layers (e.g., 16, 18, 20) of ceramic fibers. The CMC structure 12 further includes a plurality of spaced apart objects 22 on at least some of the plurality of layers along a thickness of the composite structure. The inclusion of the objects introduces an out-of-plane fiber displacement arranged to increase an interlaminar shear strength of the structure.
摘要:
A modular airfoil assembly (200) and related method for interlocking components of an airfoil structure (210) including a platform (220), an airfoil (210) having a shoulder (230) and a stem (232) extending outward from the shoulder. A ring element (100) positioned against the stem (232) secures the shoulder (230) against the platform (210). First and second members (100a, 100b) of the ring element (100) are bonded together with a portion (128j) of a surface (112a) of the second member (100b) extending within and bonded to a portion (128i) of a surface (112b) of the first member (100a).
摘要:
A ceramic matrix composite (CMC) structure (50) with first (26) and second (28) CMC walls joined at an intersection (34) containing continuous fibers (53). A gusset (52) is formed in the intersection by an inward bending of some or all ceramic fibers (53) of the intersection, resulting in a diagonal brace between the first and second CMC walls. This creates a depression (54) or void (59) in the intersection. One or more ceramic reinforcement devices fill or span the depression to prevent distortion of the gusset. The reinforcement devices may include a ceramic filler (60) or core (61), a CMC rod or cord (56), and a CMC tape (62). The ceramic filler (60) may be continuous with a ceramic insulation layer (36) on an outer surface of the first CMC wall.
摘要:
A cooling channel (36, 36B) cools an exterior surface (40 or 42) or two opposed exterior surfaces (40 and 42). The channel has a near-wall inner surface (48, 50) with a width (W1). Interior side surfaces (52, 54) may converge to a reduced channel width (W2). The near-wall inner surface (48, 50) may have fins (44) aligned with a coolant flow (22). The fins may highest at mid-width of the near-wall inner surface. A two-sided cooling channel (36) may have two near-wall inner surfaces (48, 50) parallel to two respective exterior surfaces (40, 42), and may have an hourglass shaped transverse sectional profile. The tapered channel width (W1, W2) and the fin height profile (56A, 56B) increases cooling flow (22) into the corners (C) of the channel for more uniform and efficient cooling.
摘要:
A stack of substantially parallel ceramic plates (22) separated and interconnected by ceramic spacers (26, 27) forming a seal structure (20) with a length (L), a width (W), and a thickness (T). The spacers are narrower in width than the plates, and may be laterally offset from spacers in adjacent rows to form a space (28) in a row that aligns with a spacer in another adjacent row. An adjacent plate bends into the space when the seal structure is compressed in thickness. The spacers may have gaps (60, 62) forming a stepped or labyrinthine cooling flow path (66) within the seal structure. The spacers of each row may vary in lateral separation, thus providing a range of compressibility that varies along the width of the seal structure.
摘要:
Alloy products are produced with a waxless casting process. A model of a ceramic casting vessel (34) defining a desired product shape is digitally divided into sections (10, 40, 42). Each section is translated into a soft alloy mater tool (14) including precision inserts (20) where needed for fine detail. A flexible mold (24) is cast from each master tool, and a section of the ceramic casting vessel is cast from the respective flexible mold. The vessel sections are assembled by aligning cooperating precision features (58, 60) cast directly into each section and the alloy part is cast therein. No wax or wax pattern tooling is needed to produce the cast alloy product. Engineered surface features (54) may be included on both the interior and exterior surfaces of the shell sections.
摘要:
A sealing arrangement for use in a turbine engine having ceramic components. The sealing arrangement is retained in a seal gap formed between adjacent segments and is compliant to accommodate variations in the size of the seal gap as the adjacent segments move relative to one another.
摘要:
Structural arrangements and methodology are provided for strengthening a bond between corresponding surfaces of a thermally insulating ceramic coating (14) and a ceramic matrix composite substrate (12). A subsurface inclusion of spheroid objects allows to influence a texture of an outer surface of the CMC substrate to enhance the bonding characteristics between the corresponding surfaces.
摘要:
A ceramic matrix composite (CMC) structure and methods of fabricating such structure are disclosed. In one example, the surface of a CMC substrate (12) is urged against a surface of a tool having blunt teeth. The blunt teeth can form surface indents that can serve as a first bond-enhancing arrangement between the surface of the substrate and a corresponding boundary of a thermally-insulating coating (14). In another example, sharp teeth can form surface indents and also penetrate through the surface of the substrate to cut some of the fibers beneath the surface of the substrate into split fiber segments, and a portion of the split fiber segments can protrude above the surface of the substrate. The protruding fiber segments can serve as a second bond-enhancing arrangement between the surface of the substrate and the corresponding boundary of the coating.