Abstract:
A method implemented in a network element (NE) configured to implement a cloud rendezvous point (CRP), the method comprising maintaining, at the CRP, a cloud switch point (CSP) database indicating a plurality of CSPs and indicating each virtual network attached to each CSP; receiving a register message indicating a first CSP network address and a first virtual network attached to the first CSP; and sending first report messages indicating the first CSP network address to each CSP in the CSP database attached to the first virtual network.
Abstract:
An apparatus comprising a memory, and a processor coupled to the memory and configured to transmit a backup Label Switched Path (LSP) multicast Resource Reservation Protocol-Traffic Engineering (mRSVP-TE) path request (PATH) message upstream, wherein the backup LSP PATH message requests reservation of a first backup LSP to protect a first primary LSP configured to transmit multicast data, and wherein the backup LSP PATH message is transmitted to support a facility mode one to many (1:N) fast reroute protocol.
Abstract:
An ingress node in a Software Defined Network (SDN) comprising a receiver for receiving a data packet, a processor coupled to the receiver and further configured to obtain the data packet from the receiver in a transport protocol agnostic manner, and encapsulate the data packet in an SDN packet header, wherein the packet header comprises SDN flow-specific information provided by an SDN controller, and a transmitter coupled to the processor and further configured to transmit the encapsulated data packet across a single SDN toward an egress node in the SDN.
Abstract:
In a source provider edge (PE) router, a method for supporting protocol independent multicast sparse-mode (PIM-SM) using multicast resource reservation protocol-traffic engineering (mRSVP-TE) comprising the steps of creating a protocol independent multicast (PIM) state, sending a first unicast data message to a rendezvous point (RP) PE router using the PIM state, wherein the first unicast data message is a PIM register message encapsulated as a unicast multiprotocol label switching (MPLS) packet, receiving a PIM join message from the RP PE router, wherein the PIM join message triggers creating a second PIM state, sending a second unicast data message to the RP PE router via a default multicast distribution tree (MDT) using the second PIM state, receiving a PIM register-stop message from the RP PE router, wherein the PIM register-stop message suspends sending the second unicast data message.
Abstract:
A method implemented by a network element (NE) comprises generating, by a processor, an Internet Protocol version 4 (IPv4) packet comprising an IPv4 header, a plurality of extension headers, and upper layer data, wherein the IPv4 packet indicates a total length of the IPv4 packet and a total length of the plurality of extension headers, indicating, by the processor, a protocol number associated with a first extension header of the plurality of extension headers in a protocol field of the IPv4 header, indicating, by the processor, a protocol used to encode the upper layer data of the IPv4 packet in a last protocol field of a last extension header of the plurality of extension headers, and transmitting, by a transmitter, the IPv4 packet to another NE.
Abstract:
A method implemented by a network element (NE) comprises receiving, by a receiver of the NE, an Internet Protocol (IP) version 4 (IPv4) packet from another NE, wherein the IPv4 packet comprises an IPv4 header, an extension header, and upper layer data, wherein the IPv4 header comprises a protocol number associated with the extension header, and wherein the IPv4 packet comprises a total length of the extension header, and processing, by a processor coupled to the receiver, the IPv4 packet based on the total length of the extension header.
Abstract:
A network element (NE) configured as a local cloud switch point (CSP) comprises a memory configured to store remote virtual routing information in association with an identifier (ID) of a remote CSP in a mapping table, wherein the remote virtual routing information is associated with a remote virtual network associated with the remote CSP, and wherein the remote virtual routing information comprises a virtual extensible network (VXN) type identifier (ID), an address family ID (AFI), and a subsequent AFI (SAFI). The NE further comprises a processor coupled to the memory and configured to perform encapsulation on a data packet to generate a encapsulated data packet by adding an outer header to the data packet based on the AFI, adding a virtualization header to the data packet based on the VXN type ID, and adding an inner header to the data packet based on the SAFI. The NE further comprises a transmitter coupled to the processor and configured to transmit the encapsulated data packet to the remote CSP.
Abstract:
A method of providing high throughput and low latency Internet protocol (IP) transport using channel associated signaling (CAS) comprises receiving, by a network element, a packet, wherein the packet comprises user data and parameters for controlling traffic and bandwidth for a data flow along a common path, and wherein the header of the packet comprises the parameters for controlling traffic and bandwidth for the data flow along the common path, and controlling, by the network element, traffic according to the parameters in the packet.
Abstract:
Disclosed herein is a mechanism for discovering SDN specific topology information in a SDN interconnection network. SDN specific topology information may comprise SDN IDs, SDN member router ID lists, and SDN address lists. A SDNC associated with a local SDN domain in the SDN interconnection network may determine a set of routers and/or links in the local SDN domain for link advertisement and may associate the set of routers with the local SDN domain. The SDNC may further determine a set of border routers in the local SDN domain for broadcasting the link advertisements and SDN specific topology information to other interconnected SDN domains. The SDNC may receive link advertisement and SDN specific topology information from other interconnected SDN domains and may compute a best path through each router and/or link across the SDN domains.
Abstract:
An apparatus comprising a memory, and a processor coupled to the memory and configured to transmit a multicast Resource Reservation Protocol-Traffic Engineering (mRSVP-TE) path request (PATH) message upstream, wherein the PATH message requests reservation of a backup Label Switched Path (LSP) to protect an active LSP configured to transmit multicast data. The disclosure also includes a computer program product comprising computer executable instructions stored on a non-transitory computer readable medium such that when executed by a processor cause a network element (NE) to receive a multicast PATH message from a downstream node, wherein the NE acts as a Point of Local Repair (PLR) along an active LSP, wherein the active LSP is configured to transmit multicast data, and wherein the PATH message requests reservation of a backup LSP to protect the active LSP.