Abstract:
A system comprising a plurality of path computation elements (PCEs) configured to communicate with an ingress node, jointly compute a core tree for an inter-domain point-to-multipoint (P2MP) tree across a plurality of network domains, and independently compute a plurality of sub-trees in at least some of the network domains, wherein the core tree connects the ingress node to a boundary node (BN) in each one of the network domains that have a destination node and each sub-tree connects the BN to a plurality of destination nodes in one of the network domains that have a destination node.
Abstract:
A computer program product comprising computer executable instructions stored on a non-transitory medium of an upstream node in a network system comprising a plurality of nodes that when executed by a processor cause the node to advertise an upstream assigned label to a downstream node, receive a message from the downstream node, and if the received message confirms that no conflict with the upstream assigned label exists at the downstream node, assign the upstream-assigned label, or if the received message confirms that a conflict with the upstream-assigned label exists at the downstream node, either select a new upstream-assigned label or wait until indication is received that the label resource has become available.
Abstract:
Embodiments relate generally to systems and methods for transitioning a system from a tradition network to a Software Defined Network (SDN) enabled network. In some embodiments, the systems and methods may comprise the use of a Path Computation Element (PCE) as a central controller. Smooth transition between traditional network and the new SDN enabled network, especially from a cost impact assessment perspective, may be accomplished using the existing PCE components from the current network to function as the central controller of the SDN network is one choice, which not only achieves the goal of having a centralized controller to provide the functionalities needed for the central controller, but also leverages the existing PCE network components.
Abstract:
Embodiments relate generally to systems and methods for transitioning a system from a tradition network to a Software Defined Network (SDN) enabled network. In some embodiments, the systems and methods may comprise the use of a Path Computation Element (PCE) as a central controller. Smooth transition between traditional network and the new SDN enabled network, especially from a cost impact assessment perspective, may be accomplished using the existing PCE components from the current network to function as the central controller of the SDN network is one choice, which not only achieves the goal of having a centralized controller to provide the functionalities needed for the central controller, but also leverages the existing PCE network components.
Abstract:
Embodiments are provided herein to enable single level network abstraction for a service across one or more domains. The embodiments use a single network ID to identify a service and a corresponding virtual network topology across any number of domains at a physical network. A virtual network topology can be abstracted for each service, based on the physical underlying network topology. A network controller determines, for a service, the virtual network topology within a physical network, and binds the service to the virtual network topology via a virtual network ID, which defines a single forwarding domain of the virtual network topology across the physical network. The virtual network ID is then indicated to the nodes of the virtual network topology, thus enabling the nodes to identify and forward traffic for the service, within the single forwarding domain, between end clients from edge to edge of the physical network.
Abstract:
A path computation element (PCE) central controller (PCECC) comprising a memory comprising executable instructions and a processor coupled to the memory and configured to execute the instructions. Executing the instructions causes the processor to receive a request to compute a path through a network, the request comprising a plurality of computational tasks, divide the computational tasks into a plurality of groups of computational tasks, transmit at least some of the plurality of groups of computational tasks to a plurality of path computation clients (PCCs) for computation by the PCCs, and receive, from the PCCs, computation results corresponding to the plurality of groups of computational tasks.
Abstract:
An apparatus comprising a memory, and a processor coupled to the memory and configured to transmit a backup Label Switched Path (LSP) multicast Resource Reservation Protocol-Traffic Engineering (mRSVP-TE) path request (PATH) message upstream, wherein the backup LSP PATH message requests reservation of a first backup LSP to protect a first primary LSP configured to transmit multicast data, and wherein the backup LSP PATH message is transmitted to support a facility mode one to many (1:N) fast reroute protocol.
Abstract:
In one aspect, the invention includes, in a root node along a secondary label switching path, a computer program product comprising computer executable instructions stored on a non-transitory medium that when executed by a processor cause the root node to perform the following: establish a first data plane based failure detection session having an inactive status along a first label switching path (LSP) with at least one leaf node, receive a predetermined number of notification messages from the leaf node, wherein the predetermined number of notification messages indicate the failure of a second data plane based failure detection session along a second LSP from a second processor to the leaf node, and change the status of the first data plane based failure detection session to active along the first LSP upon receipt of the predetermined number of notification messages.
Abstract:
Embodiments relate generally to systems and methods for transitioning a system from a tradition network to a Software Defined Network (SDN) enabled network. In some embodiments, the systems and methods may comprise the use of a Path Computation Element (PCE) as a central controller. Smooth transition between traditional network and the new SDN enabled network, especially from a cost impact assessment perspective, may be accomplished using the existing PCE components from the current network to function as the central controller of the SDN network is one choice, which not only achieves the goal of having a centralized controller to provide the functionalities needed for the central controller, but also leverages the existing PCE network components.
Abstract:
Embodiments relate generally to systems and methods for transitioning a system from a tradition network to a Software Defined Network (SDN) enabled network. In some embodiments, the systems and methods may comprise the use of a Path Computation Element (PCE) as a central controller. Smooth transition between traditional network and the new SDN enabled network, especially from a cost impact assessment perspective, may be accomplished using the existing PCE components from the current network to function as the central controller of the SDN network is one choice, which not only achieves the goal of having a centralized controller to provide the functionalities needed for the central controller, but also leverages the existing PCE network components.