Abstract:
Mobile stations can query independent basic service set (BSS) parameters of a group of Access Points (APs) by setting a Pre-Association Message Exchange BSSID Independent (PAME-BI) bit during Wi-Fi discovery. The PAME-BI bit may be included in a Generic Advertisement Service (GAS) request to indicate that an Access Network Query Protocol (ANQP) request carried by the GAS request is querying both independent and dependent BSS parameters. In some embodiments, the PAME-BI bit is included as a field in the ANQP query, rather than the GAS request message.
Abstract:
A method for measuring delay in a wireless fidelity (WiFi) network includes measuring a delay associated with transmission of a packet through the WiFi network in response to a measurement request from a requesting device, and contending for access to a communications channel of the WiFi network after measurement of the delay. The method also includes transmitting the delay as measured to the access point using the communications channel after a successful contention.
Abstract:
Mobile stations can query independent basic service set (BSS) parameters of a group of Access Points (APs) by setting a Pre-Association Message Exchange BSSID Independent (PAME-BI) bit during Wi-Fi discovery. The PAME-BI bit may be included in a Generic Advertisement Service (GAS) request to indicate that an Access Network Query Protocol (ANQP) request carried by the GAS request is querying both independent and dependent BSS parameters. In some embodiments, the PAME-BI bit is included as a field in the ANQP query, rather than the GAS request message.
Abstract:
A method for operating a requesting station includes generating a generic advertising service (GAS) request message including device class information, and transmitting the GAS request message. The method also includes receiving a GAS response message from a responding station, where the GAS response message includes information responsive to the device class information.
Abstract:
In one embodiment, a method includes receiving, by a station (STA) from an access point (AP), a frame including a device type indicator and comparing the device type indicator with a device type accepted by a basic service set (BSS) of the AP to produce a comparison. The method also includes determining whether to associate the STA with the AP in accordance with the comparison, associating the STA with the AP upon determining to associate the STA with the AP, and not associating the STA with the AP upon determining not to associate the STA with the AP.
Abstract:
A system and methods are provided to enable differentiated association of stations (STAs) in a WiFi system and provide differentiated quality of service (QoS) based association. The embodiments include categorizing STAs that share a channel of the WiFi network into different association priority classes, wherein the STAs with higher association priority classes wait for shorter times before starting association with an access point (AP) over the shared channel. The association priority classes are assigned by the AP or the WiFi network and signaled to the STAs. Alternatively, the association priority classes are assigned by the STAs and indicated to the AP or the WiFi network. The association priority class is determined for a STA according to traffic type, device type, subscriber type, or a random number generator.
Abstract:
In one embodiment, a method for associating in a basic service set (BSS) includes receiving, by a first node, a first packet from a second node and determining whether association is pursued in accordance with a first traffic type accepted by the first node and the first packet including a second traffic type accepted by the second node or in accordance with a first device type of the first node and the first packet including a second device type of the second node. The method also includes attaching the first node to the second node when association is pursued.
Abstract:
A mobile station selects a provider such as an online sign up (OSU) provider by receiving a pre-association message including OSU selection information from a Wi-Fi network component, such as an access point in communication with the OSU provider, and sending a selection of an OSU provider in accordance with the OSU selection information to the network component. The OSU selection information excludes identification of the OSU network provider or resource, but provides other attributes to the user, such as price or service configuration. The pre-association message may be transmitted as a beacon or using ANQP.
Abstract:
Embodiments are provided for identifying transitory WiFi users and providing a differential treatment of such users in terms of delaying associating steps between user stations (STAs) and an access point (AP). A transitory user refers to a user or user device that connects to a WiFi AP but does not run applications that require association or assigning IP addresses, such as short-term or temporary connected WiFi users that are on the move. In an embodiment, a STA connects to an AP. Upon the STA indicating its transitory behavior to the AP or the AP detecting criteria of transitory behavior of the STA, the STA obtains a delay time value from the AP. The STA then delays sending an association request to the AP, or alternatively, the AP delays handling the association request from the STA in accordance with the delay time value.
Abstract:
The hidden node problem can be avoided by scheduling stations in different sectors to perform transmissions during different time periods. Sectorized scheduling can be communicated to stations through transmission of beamformed beacon signals at the beginning of respective time periods. For instance, a first beamformed beacon signal may be transmitted to stations in a first sector at the beginning of a first time period, while a second beamformed beacon signal may be transmitted to stations in a second sector at the beginning of a second time period.