Abstract:
In one aspect, a winglet for a rotor blade is disclosed. The winglet may generally include a winglet body extending at least partially between a winglet origin and a blade tip. The winglet body may define a sweep and a pre-bend. The sweep defined between the winglet origin and the blade tip may range from about 0.5% to about 4.0% of a span of the rotor blade. The pre-bend defined between the winglet origin and the blade tip may range from about 1.5% to about 4.5% of the span of the rotor blade.
Abstract:
A wind turbine blade assembly includes a rotor blade having exterior surfaces defining a pressure side, a suction side, a leading edge and a trailing edge, each extending between a blade tip and a root. The rotor blade additionally defining a span and a chord. The blade assembly further includes a plurality of micro boundary layer energizers positioned on a surface of the pressure side of the rotor blade. The plurality of micro boundary layer energizers extending one of above or below a neutral plane of the rotor blade. The micro boundary layer energizers are shaped and positioned chordwise to delay separation of a boundary layer at a low angle of attack. A wind turbine including the blade assembly is additionally disclosed.
Abstract:
In one aspect, a method for controlling a wind turbine based on an identified surface condition of a rotor blade may include monitoring an operating parameter of the wind turbine to obtain parameter data related to the operating parameter as an operating input of the wind turbine changes, analyzing the parameter data to identify a roughness state of the rotor blade and performing a corrective action in response to the identified roughness state.
Abstract:
A flow angle probe is provided comprising: (a) a probe vane configured to contact a moving fluid within a fluid conduit; (b) an optional probe mounting mechanically coupled to the probe vane; (c) a rotary shaft coupled either to the optional probe mounting or the probe vane; (d) a rotary encoder coupled to the rotary shaft; (e) a sensor hermetically isolated from the probe vane and configured to sense a change in position of the rotary encoder; and (f) a probe housing encompassing at least a portion of the rotary shaft, the rotary encoder and the sensor. The novel flow angle probes disclosed herein may be used in a wide variety of turbomachines and fluid processing systems, and applications, including turbomachine design and operational control, as well as in flow assurance.
Abstract:
A sub-sea power supply includes a plurality of transformers, a wet-mateable connector, and a plurality of passive rectifier circuits. Each transformer includes a primary coil and secondary coil. The primary coils are coupled in parallel. The wet-mateable connector is coupleable to a sub-sea AC power source. The wet-mateable connector is coupled to the primary coils. The plurality of passive rectifier circuits is respectively coupled to the secondary coils. The plurality of passive rectifier circuits is configured to generate substantially uniform polarity voltage outputs coupled in series.
Abstract:
A method for controlling a wind farm includes: receiving temperature data associated with a plurality of locations along a sound path between the wind farm and a sound immission point from one or more sensors; estimating a propagation characteristic of the sound path based at least in part on the temperature data; predicting a noise level at the sound immission point based at least in part on the propagation characteristic; determining a control signal for one or more wind turbines in the wind farm based at least in part on the noise level; and using the control signal to control the one or more wind turbines.
Abstract:
In one aspect, a method for controlling a wind turbine based on an identified surface condition of a rotor blade may include monitoring an operating parameter of the wind turbine to obtain parameter data related to the operating parameter as an operating input of the wind turbine changes, analyzing the parameter data to identify a roughness state of the rotor blade and performing a corrective action in response to the identified roughness state.
Abstract:
A rotor blade assembly of a wind turbine includes a rotor blade having an aerodynamic body with an inboard region and an outboard region. The inboard and outboard regions define a pressure side, a suction side, a leading edge, and a trailing edge. The inboard region includes a blade root, whereas the outboard region includes a blade tip. The rotor blade also defines a chord and a span. Further, the inboard region includes a transitional region of the rotor blade that includes a maximum chord. Moreover, a chord slope of the rotor blade in the transitional region ranges from about −0.10 to about 0.10 from the maximum chord over about 15% of the span of the rotor blade. In addition, a slope of a change in the chord in the outboard region at a peak from concave to convex or vice versa is greater than about −0.03
Abstract:
The present disclosure is directed to a blade sleeve for a blade tip of a rotor blade of a wind turbine. The blade sleeve includes a rapid-prototyped body having a pressure side, a suction side, a first open span-wise end, a closed leading edge, and a trailing edge. Further, the body is slidable onto the blade tip of the rotor blade. In addition, the blade sleeve includes at least one additional rapid-prototyped feature integral with the body.
Abstract:
A wind turbine includes a hub configured to rotate about an axis at a first rotation speed and at least one blade coupled to the hub. The wind turbine also includes a sensor assembly configured to detect at least one characteristic of wind flowing through the wind turbine. The sensor assembly is mounted to the hub. The sensor assembly includes a laser device configured to emit a laser beam and at least one optical element configured to direct the laser beam. The sensor assembly also includes a non-motorized mechanism configured to rotate the at least one optical element at a second rotation speed when the hub rotates at the first rotation speed. The second rotation speed is greater than the first rotation speed.