Abstract:
A rotor blade assembly for a wind turbine includes a rotor blade having surfaces defining a pressure side, a suction side, a leading edge, and a trailing edge extending between a blade tip and a blade root. The rotor blade assembly also includes at least one noise reducer adjacent to the trailing edge. The noise reducer(s) includes at least one serration extending beyond the trailing edge in a chord-wise direction of the rotor blade. The serration(s) also includes a suction side surface and a pressure side surface. The suction side surface defines a first radius of curvature in the chord-wise direction and the pressure side surface defines a second radius of curvature in the chord-wise direction. Further, the first radius of curvature may be larger than the second radius of curvature such that the suction side surface is flatter than the pressure side surface or vice versa.
Abstract:
A method for controlling a wind farm includes: receiving temperature data associated with a plurality of locations along a sound path between the wind farm and a sound immission point from one or more sensors; estimating a propagation characteristic of the sound path based at least in part on the temperature data; predicting a noise level at the sound immission point based at least in part on the propagation characteristic; determining a control signal for one or more wind turbines in the wind farm based at least in part on the noise level; and using the control signal to control the one or more wind turbines.
Abstract:
A rotor blade assembly of a wind turbine includes a rotor blade having an aerodynamic body with an inboard region and an outboard region. The inboard and outboard regions define a pressure side, a suction side, a leading edge, and a trailing edge. The inboard region includes a blade root, whereas the outboard region includes a blade tip. The rotor blade also defines a chord and a span. Further, the inboard region includes a transitional region of the rotor blade that includes a maximum chord. Moreover, a chord slope of the rotor blade in the transitional region ranges from about −0.10 to about 0.10 from the maximum chord over about 15% of the span of the rotor blade.
Abstract:
A method for controlling a wind farm includes: receiving temperature data associated with a plurality of locations along a sound path between the wind farm and a sound immission point from one or more sensors; estimating a propagation characteristic of the sound path based at least in part on the temperature data; predicting a noise level at the sound immission point based at least in part on the propagation characteristic; determining a control signal for one or more wind turbines in the wind farm based at least in part on the noise level; and using the control signal to control the one or more wind turbines.
Abstract:
A rotor blade assembly of a wind turbine includes a rotor blade having an aerodynamic body with an inboard region and an outboard region. The inboard and outboard regions define a pressure side, a suction side, a leading edge, and a trailing edge. The inboard region includes a blade root, whereas the outboard region includes a blade tip. The rotor blade also defines a chord and a span. Further, the inboard region includes a transitional region of the rotor blade that includes a maximum chord. Moreover, a chord slope of the rotor blade in the transitional region ranges from about −0.10 to about 0.10 from the maximum chord over about 15% of the span of the rotor blade. In addition, a slope of a change in the chord in the outboard region at a peak from concave to convex or vice versa is greater than about −0.03
Abstract:
A method for reducing noise generated by a wind turbine includes measuring a reference temperature of the wind turbine. The method also includes regulating a trailing edge surface temperature of a trailing edge portion of a rotor blade attached to the wind turbine. In addition, the method includes measuring the trailing edge surface temperature. Further, the method includes regulating the trailing edge surface temperature to maintain a predetermined temperature differential between the reference temperature and the trailing edge surface temperature.
Abstract:
Vortex generators for wind turbine rotor blades having noise-reducing features are mounted within a laminar flow region on either the pressure side or the suction side of the rotor blade and have a base portion with at least one airflow modifying element extending therefrom. The base portion has a leading edge and a trailing edge extending in a first direction. Further, the base portion includes one or more edge features formed within either or both of the leading or trailing edges. Moreover, the edge features are non-parallel with respect to the first direction so as to reduce laminar boundary layer instability noise.
Abstract:
A method for determining a flow condition includes disposing a plurality of sensors on a surface and receiving a first sensor signal and a second sensor signal from the plurality of sensors. The method further includes determining at least one correlation parameter based on the first sensor signal and the second sensor signal. The method also includes receiving a plurality of stored parameters from a database, wherein each of the plurality of stored parameters is representative of a corresponding flow condition. The method also includes comparing the at least one correlation parameter with the plurality of stored parameters and selecting at least one matching stored parameter and determining a matching flow condition based on the at least one matching stored parameter.
Abstract:
A computer-implemented method of operating a wind turbine park including operating wind turbines includes recording a plurality of sound pressure measurements of the wind turbine park, thereby generating a sound recording. The method also includes calculating values for a plurality of acoustic features associated with the sound recording. The method further includes determining a relationship between the calculated values for the plurality of acoustic features and modeled acoustic features values resident within a probabilistic auditory model of the wind turbine park. The method also includes distinguishing a first contribution to the sound recording originating from the at least one operating wind turbine from a second contribution to the sound recording originating from non-wind turbine sources based on the determined relationship.
Abstract:
A rotor blade assembly of a wind turbine includes a rotor blade having an aerodynamic body with an inboard region and an outboard region. The inboard and outboard regions define a pressure side, a suction side, a leading edge, and a trailing edge. The inboard region includes a blade root, whereas the outboard region includes a blade tip. The rotor blade also defines a chord and a span. Further, the inboard region includes a transitional region of the rotor blade that includes a maximum chord. Moreover, a unitless first derivative of the chord with respect to the span of the rotor blade in the transitional region ranges from about −0.10 to about 0.10 from the maximum chord over about 15% of the span of the rotor blade. In addition, the unitless first derivative of the chord with respect to the span a slope of a change in the chord in is greater than about −0.03 at an inflection point of the chord in the outboard region.